No Image

Для чего нужен стробоскоп

СОДЕРЖАНИЕ
0
1 209 просмотров
20 августа 2019

    Главная

  • Список секций
  • Физика
  • СТРОБОСКОП

СТРОБОСКОП

Автор работы награжден дипломом победителя III степени

Современный школьник, услышав о стробоскопе, вспоминает прежде всего оглушительно ревущую дискотеку, освещенную прерывистым светом импульсных ламп. Это не удивительно: все придуманное физиками рано или поздно, но обязательно находит свое применение в развлечениях. Однако это отнюдь не означает, что развлекающиеся понимают, чем они пользуются. Чтобы усвоить суть стробоскопического метода исследования физических явлений, нужно изготовить стробоскоп и поработать с этим прибором. [1]

Цель работы: изготовить своими руками стробоскоп на транзисторах и использовать его при изучении тем по кинематике.

Задачи: 1. Собрать материал о различных видах стробоскопов;

2. Сделать подробный анализ полученной информации;

3. Изготовить стробоскоп на транзисторах.

Гипотеза: выяснить, можно ли в условиях обычной общеобразовательной школы, изготовить стробоскоп на транзисторах и использовать его на уроках физики при изучении кинематики.

Объект исследования: литература и другие источники о стробоскопах.

Предмет исследования: стробоскоп на транзисторах.

Методы: изучение литературы; использование Интернет-ресурсов; изготовление стробоскопа на транзисторах.

Практическая значимость данной работы заключается в том, чтобы собранный материал использовать в учебных целях на уроках физики и во внеклассных занятиях по этому предмету.

В представленной работе использовались материалы научных статей, периодической печати, ресурсы сети Интернет.

Глава 1. Что такое стробоскоп?

Во времена, когда ни кино, ни телевидения еще не было и в помине, для наблюдения движущихся изображений использовали прибор, названный стробоскопом (от греч. strobos — кружение, беспорядочное движение и sкорео — смотрю). Стробоскопом также назывался прибор для демонстрации движущихся рисунков, изобретённый в 1832 году учёным Жозефом Плато. [3]

Также стробоскоп – прибор для наблюдения быстрых периодических движений, действие которого основано на стробоскопическом эффекте.

Одна из возможных конструкций игрушечного стробоскопа описана в книге Б. Доната (рис. 1).

Возле края картонного диска на равных расстояниях друг от друга сделаны одинаковые прорези размером со зрачок глаза. Рядом с ними расположены рисунки последовательных стадий повторяющегося процесса, например, колебаний маятника, скачущей лошади или танцующей пары. [1] На рис. 2 в качестве примера представлены изображения двух стробоскопических дисков, найденные нами в Интернете.

Диск насаживают на ось, перед ним располагают зеркало и, приведя диск во вращение, смотрят через отверстия на изображение рисунков в зеркале. При этом видят, что маятник начал колебаться, лошадь поскакала, а партнеры закружились в танце. Это стробоскоп первого типа – используя инерционность зрительного ощущения, он превращает неподвижные изображения отдельных фаз движения в ощущение непрерывного движения. На таком принципе основаны кино и телевидение. В них сменяющие с частотой 25 Гц кадры с фиксированными изображениями создают иллюзию движущегося предмета.

Стробоскоп второго типа решает обратную задачу – превращает повторяющееся движение в неподвижный образ. Чтобы представить, как это происходит, можно сквозь отверстия стробоскопа, изображенного на рис. 1, посмотреть, например, на спицы вращающегося колеса. Скорость стробоскопа нетрудно подобрать так, что колесо будет казаться неподвижным.

INCLUDEPICTURE "../../abash/Desktop/проект/media/image1.jpeg" * MERGEFORMAT INCLUDEPICTURE "../../abash/Desktop/проект/media/image1.jpeg" * MERGEFORMAT INCLUDEPICTURE "../../abash/Desktop/проект/media/image1.jpeg" * MERGEFORMAT INCLUDEPICTURE "../Desktop/media/image1.jpeg" * MERGEFORMAT

Механический стробоскоп можно усовершенствовать, но лучше сразу обратиться к электронным стробоскопам. Проще всего изготовить стробоскоп, который вместо периодического прерывания светового пучка, идущего в глаз наблюдателя, обеспечивает прерывистое освещение движущегося предмета.

Понятно, что в таком приборе источник света должен быть малоинерционным. Для учебных стробоскопов вполне подойдут широко распространенные в наши дни яркие и сверхъяркие светодиоды. Тип светодиода значения не имеет, поэтому на схемах мы его не указываем. Чтобы повторить описанные в статье опыты, приобретите в радиомагазине самые дешевые, но достаточно яркие светодиоды, дающие белое или красное излучение. [1]

Глава 2. Стробоскопический эффект

Стробоскопический эффект – зрительная иллюзия, возникающая, главным образом, в кинематографе и телевидении в случаях, когда частота киносъёмки и проекции близка к частоте отображаемого процесса. Стробоскопический эффект в кинематографе считается проявлением искажений первого рода. Аналогичное явление можно наблюдать при работе стробоскопа в тёмном помещении.

На стробоскопическом эффекте основана регулировка скорости вращения диска некоторых проигрывателей грампластинок: освещение производилось неоновой лампой, питаемой от сети 50 Гц, поэтому лампа мерцает с частотой 100 Гц. При точной настройке скорости вращения диска, изображение штрихов на поверхности диска, освещаемой стробоскопом, кажется неподвижным. Подстройка скорости вращения диска (частоты вращения электродвигателя) производится управлением электронной схемы привода диска.

Стробоскопический эффект применяется для визуального контроля угла опережения зажигания в двигателях внутреннего сгорания: импульсная газоразрядная лампа срабатывает от высоковольтного импульса в свече зажигания, что позволяет увидеть неподвижную метку на вращающемся маховике коленчатого вала двигателя.

Стробоскопические тахометры также используют стробоскопический эффект.

Стробоскопический эффект считается искажением второго рода при записи и воспроизведении теле- и видеоизображений и имеет ту же природу, что явление муара в телевидении или цифровой фотографии. Полностью избавиться от стробоскопического эффекта в кино и телевидении практически невозможно. Можно уменьшить его интенсивность увеличением частоты киносъёмки и проекции или увеличением смаза единичного изображения (кадрика) путём увеличения выдержки, зависящей от угла раскрытия обтюратора.

Стробоскопический эффект очень опасен на производстве в условиях машиностроительных цехов: при определённом стечении обстоятельств и освещении цеха газоразрядными лампами возможна иллюзия того, что стремительно вращающиеся части станка кажутся абсолютно неподвижными. В условиях цеха, когда из-за зашумлённости определить движение предметов можно только визуально, это может стать причиной гибели или увечья людей. Для предотвращения этого освещение таких цехов газоразрядными люминесцентными лампами должно производиться с питанием разных групп осветительных ламп от разных электрических фаз осветительной сети или лампами накаливания. [3]

Глава 3. Виды стробоскопов

Стробоскоп представляет собой специальную осветительную установку, которая способна создавать стробоскопический эффект для излучаемого светового потока.Этот эффект основан на восприятии мозгом человека так называемого «остаточного изображения». В результате для создания этого эффекта прибор производит с высокой скоростью яркие и повторяющиеся вспышки света.

На сегодняшний день имеется несколько разновидностей стробоскопов, которые по своим конструкционным особенностям подразделяются на такие виды:

электронно-оптические. С целью прерывания светового потока в такого родах приборах используют затворы света. Их работа основана на разнообразных оптико-электронных эффектах;

оптико-механические. Такие приборы еще называют тахометры. В роли светового прерывателя здесь применяются диски со щелями;

электронные. В своем составе имеют электронную схему. Она представляет собой импульсный генератор, осуществляющий регуляцию частоты импульсов, а также источника света. В роли источника света в электронных моделях зачастую применяются либо светодиодные лампочки, либо газоразрядные лампы;

осциллографические. Применяются для всевозможных обследований электронных цепей. [4]

Глава 4. Где используются стробоскопы

Применение стробоскопов (разных видов) на данный момент возможно в самых различных сферах человеческой деятельности. По сфере применения такие установки делятся на:

для ночных клубов, подсветки дискотек и прочих развлекательных мероприятий;

в рекламной сфере (в частности для наружной рекламы);

Помимо этого, очень часто подобные изделия используются в научной сфере для изучения процессов, имеющих периодический характер. Например, для снятия измерений касательно амплитудных движений различных предметов и объектов.

Еще одной сферой, в которой вы не ожидали встретить стробоскоп, окажется медицина. Здесь подобного рода приборы применяются в качестве строболарингофона для людей, имеющих различные нарушения речи. [4]

Глава5. Стробоскоп на транзисторах

Простой и надежный стробоскоп можно собрать по схеме несимметричного мультивибратора, изображенной на рис. За. Принцип действия схемы заключается в следующем.

При включении питания небольшой ток идет от положительного полюса источника через резисторы R2, R1, переход база-эмиттер транзистора VT1 к отрицательному полюсу. При этом транзистор VT1 типа п-р-п открыт, так как на его базе положительный потенциал относительно эмиттера. Сопротивление перехода эмиттер-коллектор открытого транзистора VT1 мало, поэтому на базе значительно более мощного транзистора VТ2 типа р-п-р отрицательный потенциал относительно эмиттера, и этот транзистор тоже открыт.

INCLUDEPICTURE "../../abash/Desktop/проект/media/image2.jpeg" * MERGEFORMAT INCLUDEPICTURE "../../abash/Desktop/проект/media/image2.jpeg" * MERGEFORMAT INCLUDEPICTURE "../Desktop/media/image2.jpeg" * MERGEFORMAT

От источника через переход эмиттер-коллектор открытого транзистора 2, резистор R4 и светодиод HL1 идет относительно большой ток, вызывающий свечение светодиода. Потенциал точки В больше, чем С, поэтому ток течет также через резистор RЗ, конденсатор С1 и переход база-эмиттер транзистора 1. Конденсатор С1 быстро заряжается через резистор RЗ, имеющий небольшое сопротивление. При этом положительный потенциал базы относительно эмиттера транзистора 1 уменьшается, и этот транзистор закрывается. Вслед за ним закрывается транзистор 2, ток через светодиод прекращается, и светодиод гаснет.

Заряженный конденсатор С1 медленно разряжается через резисторы R3, R4, светодиод HL1, источник питания, резисторы R2 и R1. Как только на базе транзистора 1 появится положительный потенциал относительно эмиттера, этот транзистор откроется и дальше процесс повторится.

Осциллограммы напряжений между точками А, С и В, С схемы показаны на рис. 3 б. Промежутку времени (t1, t2) соответствует зарядка конденсатора С1 и вспышка света, промежутку (t2, t3) — разрядка конденсатора и соответственно пауза между следующими друг за другом вспышками. Понятно, что продолжительности этих промежутков определяются произведением емкости конденсатора на сопротивления резисторов, через которые он заряжается и разряжается.

Из изложенного ясно, что длительность импульсов напряжения, вызывающих вспышки света, зависит главным образом от емкости конденсатора С1 и сопротивления резистора R3. Частота следования этих импульсов определяется емкостью конденсатора С1 и сопротивлением цепи, состоящей из резисторов R1 и R2. Плавная регулировка частоты осуществляется переменным резистором R2. Для обозначенных на схеме параметров элементов генератора при напряжении питания 4,5 В частота регулируется в пределах от 30 до 100 Гц. [1]

Заключение

Изучив литературу и интернет – источники о стробоскопах, выполнили стробоскоп на транзисторах, предложенный в статье В. В. Майера, Е. И. Вараксиной «Электронные стробоскопы для учебных опытов». На следующем этапе сфотографировали стробоскоп в движении, получили различные траектории движения тела, по которым можно наглядно определять различные виды его движения. Затем попробовали по фотографиям изучить движение тела под углом к горизонту. Просчитать, с какой скоростью движется тело, угол под которым его бросили на поверхность, дальность полета тела в данной конкретной ситуации, высоту подъема и т.д. А так же движение тела по окружности, свободное падение тела, его движение по вертикали вверх. Проблема в том, что не всегда можно получить фотографию, которую можно использовать для исследования. В дальнейшем, можно попробовать с помощью специальных программ, сделать подвязку с компьютером, для более продуктивной работы.

Список использованных источников и литературы

Майер, В.В. Электронные стробоскопы для учебных опытов [Текст] / В.В. Майер, Е.И. Вараксина // Потенциал. 2010 № 11 С. 68–76.

Майер, В.В. Стробоскопический метод в кинематике [Текст] / В.В. Майер, Е.И. Вараксина // Потенциал. 2010 № 12. С. 65–71.

Опережение зажигания в бензиновых двигателях и момент впрыска топлива в дизельных — это важные параметры, играющие определяющую роль в работе мотора. Поэтому установка опережения зажигания должна выполняться как можно точнее, иначе двигатель просто не будет работать. Большую помощь в этом деле оказывают стробоскопы — специальные инструменты, о которых пойдет речь в данной статье.

Эта публикация продолжает серию статей о специальном инструменте.

Что такое стробоскоп и зачем он нужен двигателю

Опережение зажигания — один из важнейших параметров, определяющих работу двигателя. Если неправильно выбрать момент зажигания топливно-воздушной смеси в бензиновых двигателях или момент впрыска топлива в камеру сгорания в дизелях, то мотор будет работать из рук вон плохо. Как установлено, зажигание и впрыск необходимо производить чуть ранее, чем цилиндр дойдет до верхней мертвой точки — поэтому параметр и назван опережением зажигания. Но почему так?

Дело в том, что сгорание любого топлива происходит не моментально, а занимает какой-то промежуток времени, поэтому при поджигании топлива еще до ВМТ «по-настоящему» оно начнет гореть только у ВМТ, поэтому передаст поршню накопленную энергию (в виде давления расширяющихся отработанных газов) с максимальной эффективностью. Двигатель разовьет большую мощность и будет работать без перебоев.

Если зажечь топливо непосредственно в ВМТ, поршень получит не всю энергию, а работа двигателя в целом будет неудовлетворительной. А если, напротив, зажечь топливо слишком рано, то поршню из-за давления газов будет трудно дойти до ВМТ. В ряде случаев такой двигатель даже и завести будет невозможно.

Опережение зажигания определяется для каждого двигателя еще на заводе, а чтобы в дальнейшем двигатель можно было отрегулировать, на него наносятся установочные метки — одна неподвижная, непосредственно на двигателе, а вторая подвижная, на маховике или шкиве привода генератора (она, как нетрудно понять, показывает скорость вращения коленвала). В определенные моменты времени эти метки занимают определенное положение друг относительно друга, а определить это положение как раз и помогает стробоскоп.

Стробоскоп JTC

Стробоскоп-вспышка 12V с тахометром и вольтметром ОРИОН

Стробоскоп автомобильный ОРИОН

Стробоскоп для дизельных и бензиновых двигателей интеллектуальный ОРИОН

Устройство и принцип действия стробоскопа

Стробоскоп — прибор, предназначенный для наблюдения за быстропротекающими процессами в реальном времени. В простейшем случае стробоскоп представляет собой устройство, формирующее частые короткие световые вспышки, с помощью которых и достигается стробоскопический эффект.

Стробоскопический эффект сводится к следующему. Если на какое либо движущееся (в том числе и вращающееся) тело направить короткие и частые вспышки света, то для нашего глаза тело как бы «замрет» — мы будем видеть не плавное движение, а прерывистое, состоящее из множества статичных «картинок».

Если с помощью стробоскопа наблюдать повторяющееся движение — например, метку на вращающемся шкиве или маховике двигателя, то при определенных частотах вспышек (частота вспышек должна быть кратна частоте вращения шкива) метка для нашего глаза замрет на одном месте, и именно благодаря этому эффекту существует возможность регулировки опережения зажигания.

В современном стробоскопе яркие и короткие световые импульсы создаются специальными безынерционными ксеноновыми лампами (обычные лампы накаливания зажигаются и гаснут медленно, и даже при частоте тока 50 Гц колебания их яркости уже незаметны нашему глазу, поэтому они непригодны для работы в стробоскопе), которые управляются электронным блоком. Однако ресурс ксеноновой лампы, работающей в таком режиме, ограничен, поэтому ее необходимо периодически заменять.

Сейчас рынок предлагает не просто стробоскопы, а приборы с массой дополнительных функций. В частности, цифровые стробоскопы могут измерять опережение зажигания в бензиновых двигателях и момент впрыска топлива в дизельных, измерять частоту вращения коленчатого вала, напряжение в бортовой сети и другие параметры. И все измеренные характеристики выводятся на встроенный экран, что значительно упрощает применение прибора.

Также стробоскопы комплектуются целым набором зажимов и датчиков для проведения измерений на различных типах двигателей. Все это делает стробоскоп универсальным прибором, который могут применять и профессионалы, и рядовые автолюбители.

Применение стробоскопа для проверки бензиновых двигателей

С помощью стробоскопа можно с одинаковым успехом проверять работу и карбюраторных, и инжекторных двигателей. В обоих случаях для определения момента опережения зажигания необходимо закрепить емкостный датчик (выполнен в виде обычного зажима типа «крокодил») на высоковольтном проводе, идущем к свече зажигания первого цилиндра, а лампу стробоскопа направить на установочные метки.

Если опережение зажигания выставлено правильно, то при работе двигателя на холостом ходу метки должны совпасть. В случае расхождения меток необходимо отрегулировать прерыватель-распределитель зажигания (трамблёр) так, чтобы метки «сошлись». Здесь необходимо отметить, что измерение и регулировка должна проводиться только с отключенной от вакуумного датчика трамблера вакуумной трубкой.

С помощью стробоскопа также можно проверять работу центробежного и вакуумного (для карбюраторного двигателя) регуляторов трамблера.

Проверка работы центробежного регулятора также проводится с отсоединенной вакуумной трубкой. Оценить работу регулятора можно, увеличив обороты двигателя примерно до 2000 — в этом случае угол опережения зажигания должен увеличиться (на 5-7 градусов, но все зависит от двигателя). Если этого не происходит, то центробежный регулятор трамблёра неисправен и его необходимо ремонтировать.

Для проверки вакуумного регулятора необходимо подключить вакуумную трубку и снова увеличить обороты двигателя. При исправном регуляторе установочные метки разойдутся еще больше — не менее чем на 15 градусов.

Многие современные инжекторные двигатели лишены традиционного прерывателя-распределителя, поэтому для них актуальна только установка опережения зажигания по измерению момента подачи импульса на свечи.

Применение стробоскопа для проверки дизельных двигателей

Для установки опережения зажигания дизельного двигателя используется похожая методика, однако здесь для определения момента впрыска топлива используется пъезодатчик, устанавливаемый на топливную магистраль первого цилиндра. При подаче топлива от ТНВД к форсунке, топливная трубка испытывает толчок и на очень короткое время расширяется — это кратковременное увеличение диаметра трубки фиксируется датчиком и используется для регулировки опережения зажигания.

Как и в случае с бензиновым двигателем, угол опережения впрыска топлива в камеру сгорания определяется по установочным меткам, которые в каждом конкретном двигателе должны иметь строго определенное положение. При несовпадении меток необходимо провести регулировку с помощью установленной на ТНВД муфты опережения зажигания (МОЗ).

Однако, как нетрудно понять, такая методика подходит лишь для традиционных систем впрыска топлива, а для современных моторов с системой Common Rail или насос-форсунками этот способ неприменим. В таких двигателях присутствуют электронные блоки управления и регулировки проводятся с их помощью. Хотя определение положения установочных меток даже в самых современных двигателях осуществляется с помощью все того же стробоскопа.

Правильно выставленное опережение зажигания — залог легкого пуска и бесперебойной работы двигателя. А благодаря стробоскопу выполнить все необходимые регулировки можно без помощи специалистов.

Теплое время года, особенно весна и лето — это сезон велосипедов, прогулок на природе и семейного отдыха. В интернет-магазине AvtoALL.RU вы найдете всё, чтобы сделать свой отдых приятным и полезным.

Майские праздники — это первые по-настоящему теплые выходные, которые можно с пользой провести на природе в кругу семьи и близких друзей! Сделать досуг на свежем воздухе максимально комфортным поможет ассортимент продукции интернет-магазина AvtoALL.

Трудно найти ребенка, которому не нравились бы активные игры на улице, и каждый ребенок с самого мечтает об одной вещи — велосипеде. Выбор детских велосипедов — ответственная задача, от решения которой зависит радость и здоровье ребенка. Типы, особенности и выбор детского велосипеда — тема этой статьи.

Теплое время года, особенно весна и лето — это сезон велосипедов, прогулок на природе и семейного отдыха. Но велосипед будет комфортным и принесет удовольствие только в том случае, если он подобран правильно. О выборе и особенностях покупки велосипеда для взрослых (мужчин и женщин) читайте в статье.

Шведский инструмент Husqvarna известен во всем мире, он является символом настоящего качества и надежности. Среди прочего под этим брендом выпускаются и бензопилы — все о пилах Husqvarna, их актуальном модельном ряду, особенностях и характеристиках, а также о вопросе выбора читайте в данной статье.

Отопители и предпусковые подогреватели немецкой компании Eberspächer — известные во всем мире устройства, повышающие комфорт и безопасность зимней эксплуатации техники. О продукции данного бренда, ее типах и основных характеристиках, а также о подборе отопителей и подогревателей — читайте в статье.

Многие взрослые не любят зиму, считая ее холодным, депрессивным временем года. Однако дети совсем другого мнения. Для них зима — это возможность поваляться в снегу, покататься на горках, т.е. весело провести время. И одним из лучших помощников для детей в их нескучном времяпровождении — это, например, всевозможные санки. Ассортимент рынка детских санок очень обширен. Рассмотрим некоторые виды из них.

При использовании стробоскопа для наблюдения за движущимся объектом свет оказывает такое же влияние на глаза, как и вспышка фотокамеры на плёнку. Каждый импульс стробоскопа даёт чёткое, ясное изображение, поэтому можно рассматривать мельчайшие детали объекта или поверхности на высоких скоростях без возникновения эффекта смазывания. Именно по этой причине стробоскопическое освещение используется как инструмент для визуального осмотра невооружённым глазом многих непрерывных процессов , а также для усовершенствования анализа движения или видеографии.

Стробоскопическое освещение широко применяется в тех областях промышленности, где оператор должен наблюдать за процессом производства, но наблюдение затруднено из-за эффекта смазывания. Настройки стробоскопа и получаемый результат будут зависеть от области промышленности, процесса, продукта и внешнего освещения.

Что такое стробоскопическое освещение?

Стробоскоп – это источник света, который мгновенно загорается и потухает. Это инструмент для демонстрации и настройки движущихся или вибрирующих объектов с помощью подсвечивания их импульсными лампами для создания эффекта неподвижности.

Стробоскоп был изобретён в 1836 году Жозефом Антуаном Фердинаном Плато, профессором Гентского университета (Бельгия). В 1931 году профессор Массачусетского Технологического Института д-р Гарольд Юджин Эджертон разработал ксеноновую импульсную лампу. Благодаря этому изобретению стробоскоп получил применение ещё и в фотографии, а также во многих областях коммерции и промышленности.

Стробоскопическая лампа производит очень короткую вспышку света длиною в одну стотысячную секунды. Благодаря коротким вспышкам высокой интенсивности изображение предмета «застывает» на cетчатке глаза, создавая чёткий стоп-кадр. Если предмет продолжает двигаться, его движение воспринимается как серия стоп кадров, будь то движение бейсбольного мяча или танец человека под светом стробоскопа на дискотеке.

В основном люди сталкиваются с действием стробоскопа на дискотеках или при проведении осмотра двигателя с помощью стробоскопических ламп. В таких случаях частота вспышки достаточна низка, поэтому человек может с лёгкостью проследить паузу между вспышками лампы. При этом прибор, как правило, работает с частотой 10-30 вспышек в секунду (10-30 Гц) и создаёт эффект мерцания.

Когда лампа стробоскопа превышает скорость 60Гц, вспышки появляются настолько часто, что человеческий глаз не улавливаем момент включения/выключения света. Таким образом больше не ощущается раздражающего мерцания, как в вышеуказанных случаях.

Работа стробоскопов с частотой выше 60Гц внешне ничем не отличается от освещения люминесцентными лампами или лампами накаливания, кроме того, что стробоскоп освещает движущийся предмет, создавая его чёткое изображение, на котором фокусируется глаз.

Как работает стробоскопическая лампа?

Когда предмет движется быстро, то глаза не могут сосредоточиться на нём. В зависимости от скорости движения предмета по отношению к расстоянию от смотрящего предмет может казаться размытым (расплывчатым) изображением. Например, лопасти вентилятора при вращении кажутся полупрозрачной плоскостью. Наблюдатель пытается сконцентрироваться на лопастях, но так как они продолжают движение, глаза получают только размытую картинку:

Размытие изображения называется «motion blur» (смазывание). Из-за эффекта смазывания невозможно чётко видеть предмет, движущийся со скоростью 80 м/мин, и довольно затруднительно различить предмет, скорость которого находится в диапазоне от 40 до 80 м/мин .

Попытки сконцентрироваться на движущемся предмете ясно демонстрируют нам ограниченность нашего зрения. Реагирование глаза на свет можно сравнить с реакцией химических веществ на плёнке фотоаппарата. Когда свет попадает на химические вещества, они активируются и формируют изображение на плёнке. Если фотографируемый объект движется слишком быстро, изображение получается смазанным. Чтобы решить эту проблему, фотограф увеличивает выдержку затвора. При короткой выдержке сокращается время активации светом химического материала. Так как затвор открыт на меньший интервал времени, объект лучше фиксируется и получается менее размытым на плёнке. Таким образом, фотограф получает более чёткое изображение. Очевидно, что мы не можем увеличить частоту восприятия наших глаз, поэтому нам необходимо подобрать подходящий фотографический затвор, который не произведёт разрушающий, раздражающий или ограничивающий наши возможности эффект.

Вспышка стробоскопической лампы замораживает движение предмета так же, как это делает затвор фотоаппарата. На вспышку длиною 10-30 мкс сетчатка глаза реагирует как на стоп-кадр. Объект, движущийся со скоростью 600 м/мин, проходит расстояние в 0,1 мм за это время, и оно представляется настолько ничтожным, что глаз воспринимает его как отсутствие движения. Таким образом устраняется эффект размытости и повышается контрастность, которая имеет решающее значение для выделения и распознавания предмета. При увеличении частоты вспышки в поле зрения глаза прокручивается последовательность изображений, которая стимулирует выявление и идентификацию дефектов. Когда глаз видит один и тот же дефект несколько раз, он сосредотачивается на нём и дефект отпечатывается в сознании.

Синхронизация стробоскопической вспышки

При изменении времени появления вспышки стробоскопа или интервалов между вспышками (частоты вспышек) движущийся или вращающийся объект может казаться:

  1. остановившимся
  2. немного отклоняющимся вперёд или назад.

В вышеупомянутом примере с вентилятором лопасть будет казаться неподвижной, если вспышка будет синхронизирована с определённым положением лопасти при вращении. Это происходит оттого, что стробоскопическая вспышка отображает одно и то же изображение на сетчатке глаза. Поскольку сетчатка не видит движения лопастей между импульсами стробоскопа, глаз воспринимает это как состояние покоя.

Если стробоскоп синхронизирован на частоту вспышек, немного превышающую скорость вращения вентилятора, то лопасть не будет успевать принимать то же положение при возникновении следующей вспышки. В таком режиме на сетчатке глаза будет отображена последовательность положений лопасти с отклонением назад в каждом последующем кадре. Поэтому будет казаться, что вентилятор медленно движется в обратном направлении.

Рис1: Если кажется, что вентилятор движется в обратную сторону, то частота стробоскопической вспышки выше скорости вращения лопастей:

Если стробоскоп синхронизирован на частоту вспышек, немного отстающую от скорости вращения вентилятора, то лопасть будет вставать в то же положение раньше возникновения следующей вспышки. В таком режиме на сетчатке глаза будет отображена последовательность положений лопасти с отклонением вперёд в каждом последующем кадре. Поэтому будет казаться, что вентилятор медленно движется вперёд.

Рис2: Если кажется, что вентилятор движется вперёд, то частота стробоскопической вспышки ниже скорости вращения лопастей:

Наблюдение за технологической линией без отпечатанного изображения

При наблюдении линейно движущейся линии, например, при обработке стали, можно наблюдать аналогичный с вентилятором алгоритм.

При наблюдении технологических линий важно поддерживать частоту вспышки выше значения 50-60 Гц. Так как при отсутствии повторяющегося шаблона глаза не могут зафиксироваться, необходимо преодолевать частоту мерцания. В таком случае устанавливается такая частота вспышки лампы, которой будет достаточно, чтобы зафиксировать «зернистую структуру» поверхности. Обычно частота составляет 65 до 85 вспышек в секунду, что значительно превышает обнаруживаемую частоту мерцания. Зерновой рисунок металлической поверхности на полосе может казаться неподвижным или «плавающим». Увеличивая или уменьшая частоту вспышки, вы можете передвигать зернистую структуру вперед или назад по полосе. После того, как вы зафиксировали зернистую структуру, любой дефект, выбивающийся из
обычной схемы прокатки, будет легко обнаружить. Такая зернистая структура является результатом процесса шлифовки валов конвейера при прокатке, которые передают свой рисунок прокатываемому материалу.

Возможно, вы столкнётесь с материалом без зернистой структуры. Например, такое можно наблюдать, когда поверхность валов конвейера гладкая, т. е. они изготовлены из нержавеющей стали высокого качества. В таком случае рекомендуется настроить частоту вспышек выше 70 Гц.

Инерция зрения

Существуют ошибочные представления о работе стробоскопов, которые необходимо прояснить.

Часто с работой стробоскопа ассоциируется мерцание. Благодаря феномену инерции зрения при высокой частоте вспышки мерцание не наблюдается. Лампа стробоскопа быстро включается и выключается каждую секунду, при этом каждая вспышка длится только 10 мкс за импульс. Из математического соотношения видно, что свет практически никогда не включён. Даже при частоте 60-100 Гц лампа находится в выключенном состоянии 99% времени. Тем не менее, глаз поглощает свет подобно тому, как губка впитывает влагу. Губка впитывает влагу быстро, но испаряет её очень медленно. Вспышка света активирует химические вещества глаза. Когда свет выключается (или в нашем случае в промежуток между вспышками) реакция на химические вещества угасает экспоненциально и занимает 350 мс до полного угасания.
При частоте вспышки выше 60 Гц химические вещества активируются заново быстрее, чем угасает свет, поэтому глаз не улавливает пауз между вспышками. Фотохимический процесс глаза, заключающийся в удерживания света, называется «инерцией зрения».

Каждый световой импульс освещает предмет только в течение одной стотысячной секунды или при частоте 60 Гц 6/10 000 секунды. Но при частоте выше 50-60 Гц благодаря инерции зрения промежутки темноты нивелируются и предмет кажется непрерывно освещённым.

Именно из-за инерции зрения вы не замечаете отдельных кадров кино- или телеизображения, частота которых не превышает 48-60 вспышек в секунду. Ниже представлен раскадровка обычного кинофрагмента. По этой же причине вы видите пятно после того, как вы делаете снимок с включённой вспышкой фотокамеры. Вспышка перегружает химическую реакцию сетчатки глаза, и пятно остается там на какое-то время.

Наблюдение за технологической линией печати

В определённых областях применения, таких как полиграфия, частота вспышки, скорее всего, будет ниже 50 Гц и световой импульс будет заметен. И в этом случае благодаря инерции глаза вы не будете испытывать дискомфорт, потому что передаваемое на сетчатку глаза изображение будет оставаться там до тех пор, пока следующая вспышка не обновит изображение.

Подобно лопастям вентилятора, синхронизированным со вспышкой, печатная серия также будет казаться неподвижной. Глазам станет дискомфортно, только когда частота будет ниже 20 Гц. Тем не менее, такая частота вспышки допускается и в определённых случаях понижается до 5 Гц.

Яркость против чёткости

Многие люди считают, что если на поверхность быстродвижущегося объекта падает большое количество света, то дефекты этого объекта будет легче рассмотреть.

Вернёмся к описанию работы глаза, когда на плёнке фотоаппарата появляется размытый снимок из-за продолжительности движения во время открытия затвора. Если вы не можете управлять выдержкой камеры (или глаза в данном случае), всё, что вы получаете от яркого света – это более яркий эффект смазывания.

Поскольку у глаза нет затвора, мы создадим эффект затвора с помощью импульсной лампы стробоскопа. Лампа стробоскопа создаёт короткий световой импульс. Как упоминалось ранее, свет не горит 99% времени. Это отличается от действия ламп накаливания, люминесцентных, ртутных и галогенных ламп. Такие лампы образуют непрерывный свет, который постоянно активируют химическую реакцию глаза. Именно поэтому при таком непрерывном свете вы наблюдаете призрачные или размытые изображения быстродвижущихся предметов. При правильной установке прибора всего нескольких сотен люксов
стробоскопического света достаточно для рассмотрения мельчайших деталей. Короткий импульс света действует подобно затвору, передавая серию чётких, ясных изображений на сетчатку глаза наблюдателя. Квалифицированные инспекторы и операторы прокатного стана, которые имеют представление о дефектах поверхности, могут незамедлительно выявить изъяны при скорости до 2000 м/мин.

Неопытным операторам будет легче определять дефекты при стробоскопическом освещении, и они быстро научатся выявлять дефекты производства.

Влияние внешнего освещения на стробоскопическое

Стробоскопический эффект снижается, если стробоскопическое освещение смешивается с внешним освещением. Для достижения необходимого стробоскопического эффекта стробоскопическое освещение должно быть в 4 раза сильнее внешнего. Под внешним освещением понимается весь свет, который прямо или косвенно попадает на осматриваемую поверхность, т.е. свет от ламп накаливания, люминесцентных, кварцевых, натриевых/ртутных ламп, а также и естественный свет. В некоторых случаях необходимо принять меры по уменьшению интенсивности данных видов освещения.

Рис: Ослабление стробоскопического эффекта при соотношении внешнего и стробоскопического освещения 1/1 вместо 1/4:

При усилении внешнего освещения стробоскопический эффект ослабевает. В таком случае следует либо установить стробоскоп ближе к поверхности, либо усилить стробоскопическое освещение, либо оборудовать колпак для защиты наблюдаемой зоны от внешнего света.

Стробоскопическое освещение в промышленности

При использовании стробоскопа для наблюдения за движущимся объектом свет оказывает такое же влияние на глаза, как и вспышка фотокамеры на плёнку. Каждый импульс стробоскопа даёт чёткое, ясное изображение, поэтому можно рассматривать мельчайшие детали объекта или поверхности на высоких скоростях без возникновения эффекта смазывания. Именно по этой причине стробоскопическое освещение используется как инструмент для визуального осмотра невооружённым глазом многих непрерывных процессов, а также для усовершенствования анализа движения или видеографии.

Стробоскопическое освещение широко применяется в тех областях промышленности, где оператор должен наблюдать за процессом производства, но наблюдение затруднено из-за эффекта смазывания. Настройки стробоскопа и получаемый результат будут зависеть от области промышленности, процесса, продукта и внешнего освещения.

Существует два основных типа процессов, для наблюдения которых используется стробоскоп: вращательные и линейные:

  • При наблюдении за такими вращательными элементами, как двигатели, валы, зубчатые колёса, лопасти и т. п. наблюдаемый объект вращается в определённом пространстве и может быть зафиксирован для проверки на наличие дефектов, вибрации, рассогласованности, бокового зазора и т. д.
  • При наблюдении за линейными процессами, такими как производство стали, текстиля, пластмассы, печать и переработка происходит проверка на наличие двух типов дефектов – повторяющихся и случайных. Повторяющийся дефект воспроизводится через фиксированные интервалы. Это может быть отметка вальца на стали или царапина на печатной форме. Случайный дефект появляется на наблюдаемых поверхностях один раз или несколько раз через разные интервалы. Поскольку стробоскопический эффект обеспечивает передачу нескольких изображений на сетчатку глаза, одиночный дефект проявляется несколько раз, когда он проходит под стробоскопом, что облегчает его обнаружение оператором. Как упоминалось ранее, если глаз видит изображение несколько раз, оно запоминается. Таким образом, оператор сможет выявить и повторяющиеся, и случайные дефекты и принять соответствующие меры.

Важнейшей областью применения стробоскопов Unilux является осмотр поверхностей в сетях и полосах при производстве бумаги, печати, переработке, обработке металлов , также стробоскопы используются и во многих других отраслях.

Источник публикации – Unilux Europe GmbH

Комментировать
0
1 209 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector