No Image

Как увеличить мощность двигателя дизель

0
28 просмотров
20 августа 2019

При написании первой части я допустил ошибку, раньше об этой проблеме уже указывал и хотел заострить на этом внимание, но не сделал. Уважаемые читатели у меня есть проблема с русским языком, я думаю на английском языке, если речь идет о моторах, настройке и т.д. Я просто не знаю русскую терминологию и поэтому использую много английских выражений. Это моя страничка, а не дипломная работа, поэтому у себя я могу позволить такие вольности, уж простите меня, надеюсь на Ваше понимание. И конечно буду рад, если кто-то в комментариях подберет правильную формулировку на русском языке.

Ну что, начнем. Для начало предлагаю посмотреть видео. Это у нас на автодроме Мост. Шкода фабиа 2.0 турбодизель. Тюнинговая, не спорт. Подвеска, тормоза, система впуска, выпуска, полу слики (семи слики) резина. Вес – не облегчен. Против Нисан ГТР (сток на полу сликах так же). Фабиа просто закончила ездить и после пересечения финиша поехала 1 круг остывать и в боксы, а то еще не известно кто кого.
Сразу уточню – водитель ГТР едет очень хорошо (не забывайте это очень мощная машина, и весит более 1700 кг). Времена у него 1.52. Лучшее, что я видел на мероприятиях типа Тайм атак, трек дни на сток ГТР 1.51 (полуслики). Мой рекорд на моем дедушке (форде фокус) 1.50 (полуслики).

Как Вам такой расклад?

Теперь поговорим о принципах повышения мощности на дизельных моторах. А это очень просто, правда, необходимо только увеличить подачу топлива и все, мощность растет со страшной силой. Но это только одна сторона медали. Если кто занимался настройкой бензиновых турбо моторов, то знают, как легко его положить. Так вот, при настройке дизельного мотора, это еще проще сделать (убить мотор). Моя рекомендация – если у Вас нет опыта, знаний – доверьте эту процедуру профессионалу. А я в этом посте расскажу принципы, которые помогут Вам в этой проблеме.
Для понимания я приведу различия в настройке между — compression ignition engine и Spark Ignition. Почему я использую именно эту формулировку, а не дизельный и бензиновый двигатели. Да все очень просто, и Spark Ignition двигатель работает не только на бензине, это может быть и газ, этанол, метанол да еще куча разных углеводородов, это же относится и к — compression ignition engine, он работает не только на дизеле. Но вот процессы не зависят от вида топлива, только от вида, типа ДВС (и пожалуйста, не надо указывать какие еще бывают двигатели, речь, пост не об этом. Напишите, Вы советчик, у себя в посту об этом).
В бензиновых ДВС наша основная задача для повышения мощности, это увеличить подачу кислорода в камеру сгорания. Для борьбы с повышением температуры в камере сгорания, ЕГТ с детонацией, preignition (возгорания топлива на такте сжатия без помощи свечи зажигания. Поэтому в одном из постов я этот процесс и назвал dieseling) мы богатим топливо воздушную смесь. Короче чем богаче смесь, тем сильнее мы охлаждаем камеру сгорания, поршня и т.д.

В дизельном моторе – чем больше мы подадим топлива, тем выше будет температура в КС. Это одно из основных отличий.
Далее, вспоминаете в 1 части, я просил Вас запомнить, что температура воздуха в конце такта сжатия в дизельном моторе повышается с повышением оборотов. Это очень важно.
Дизельные моторы работают по сравнению с бензиновыми на очень бедных смесях. Если скажем бензиновый мотор 14.7 при малых нагрузках и 12.5 для максимальной мощности, то дизельный двигатель 15.0 на малых оборотах (1000 об/мин) и 24-28.0 на 4000-4500 об/мин (сток настройки).

Теперь Вы понимаете, почему с увеличением оборотов необходимо беднить смесь. Если мы, оставим такую же АФР 15.0, как на низких оборотах, так и на высоких, у нас просто из-за сильно возросшей температуры в КС взорвется мотор.

Так что же делать. Да все просто, в этом нам поможет мой любимый буст (надув). Само по себе поднятие избыточного давления только уменьшит мощность т.к. смесь станет беднее. Но вот, то, что она АФР (топливо воздушная смесь) станет беднее, дает нам возможность увеличить подачу топлива и как следствие увеличение мощности.
Теперь ясно, что для увеличения мощности в дизельном моторе необходимо увеличить подачу топлива и направить все усилия, применить всевозможные способы, которые нам доступны для понижения температуры в КС. Давайте опустим моменты связанные с модернизацией системы подачи топлива, как это сделать т.к. этих систем в дизельных моторах много, следовательно, и методы, способы разные. Остановимся на принципах.
Повышение надува на 10% на сток машине, скажем для примера на VW TDI 2.0 170 сил в стоке по паспорту до 1.7 бара (избытка, не абсолютного давления) это безопасно. На этой неделе делал такую машину. Мощность перед настройкой была 182 силы (это нормально для VAG машин, они часто занижают мощность). После настройки 205 сил.
Это только настройка. Что еще можно сделать? Конечно если мы говорим о серьезном тюнинге (как фабиа на видео) то конечно, не говоря о замене турбины, усовершенствовании системы подачи топлива, системы охлаждения двигателя (радиатор, помпа) для борьбы с температурой в КС можно использовать такие же методы которые используются в бензиновых двигателях для борьбы с детонацией :
— более производительный интеркулер
— Установка системы впрыска вода/метанол (об этой системе скоро будет отдельный пост, а то в интернете столько бреда, как метанол 150 октан и т.д. и ни кто не дооценивает воду).
— усовершенствование системы выпуска
— модернизация системы впуска
— подбор турбины с максимальной эффективностью под планируемую мощность.

Но самое главное – это настройка. Если при настройке бензинового двигателя в качестве индикаторов мы используем датчик детонации, АФР, ЕГТ (температура выхлопных газов) и следим онлайн за изменения мощности (реальной под нагрузкой), то для дизеля ЕГТ и АФР. Более того, когда вы настраиваете, то значения ЕГТ должны учитываться только после, как минимум 20 секундном удержании мотора под полной нагрузкой на различных оборотах. Я слышал, что некоторые настройщики добавляют смесь до той поры, пока не пойдет черный дым, а потом не много убирают – это не правильно. Если Вы настроите мотор и при этом измерения ЕГТ были произведены только при краткосрочной нагрузке, то это не факт, что температура не будет повышаться при более длительной езде при полной нагрузке. А если температура будет превышать предельные значения, то это вопрос времени что у Вас первое выйдет из строя двигатель или турбина.
Опять не уложился. Придется писать часть 3. О видах чип боксов (power box for diesel), что важно именно для настройки и расскажу Вам наш фирменный трюк, как мы делаем без модернизаций, на сток машинах еще плюс 10-20% мощности (к примеру на выше указанном Фольксвагене + еще 30 сил) и это БЕЗОПАСНО.

Читайте также:  Снять фару нива 2121

На сегодняшний день есть несколько простых способов увеличения мощности дизельного двигателя − это чип-тюнинг (перепрошивка блока ЭБУ) и установка специального блока увеличения мощности параллельно блоку ЭБУ.

Чип-тюнинг в данной статье не рассматривается, так как по поводу данного метода проводились независимые исследования. Было доказано, что данный способ увеличения мощности существенно снижает срок службы дизельного двигателя и негативно влияет на стабильность работы всей системы в целом. Если провести сравнение с организмом человека, то чип-тюнинг − это как прием анаболических стероидов, которые дают отменный результат, но при этом непрогнозируемый исход для организма: может повезти и всё будет нормально, а может и не повезти − последствия будут плачевными. То же и с чип-тюнингом: результат будет, но какой ценой?! В связи с этим мы опишем единственно безопасный на сегодняшний день способ увеличения мощности − с помощью специальных модулей/блоков.

В процессе написания и анализа российского рынка блоков увеличения мощности дизельных двигателей была отмечена слабая техническая и информационная поддержка от фирм, занимающихся продажей данных устройств. Дело в том, что огромное количество сайтов унифицировано «дергает» описание работы устройств друг у друга, пытаясь внести новое свойство своему продукту лишь только на словах. Главное, никого не смущает гибкая конвертабельность таких устройств между применением в обычном атмосферном дизельном двигателе с рядным ТНВД с системами common rail. Также эти интернет-магазины не открывают истинных принципов работы своих модулей. Так вот, наших читателей мы не считаем людьми, готовыми купить любой продукт с минимальным набором таких свойств, как, например «Сделано в Германии», «Одобрено Евросоюзом», «Проверено нашими специалистами», «Продукт месяца» или «Только у нас».

Мы попробуем рассказать о разновидностях таких блоков и приоткрыть завесу тайн, которая над этим всем стоит. После прочтения данной статьи для полного понимания принципов работы всех блоков увеличения мощности, мы рекомендуем ознакомиться со статьей, которая описывает принцип работы современного дизельного двигателя с аккумуляторной топливной системой common rail.

РАЗНОВИДНОСТЬ СПОСОБОВ УВЕЛИЧЕНИЯ МОЩНОСТИ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

На сегодняшний день нет возможности перепрограммировать рабочую вычислительную матрицу в ЭБУ дизельного двигателя, так как ЭБУ дизельного двигателя самостоятельно рассчитывает значения режимов, постоянно собирая и анализируя информацию с внешних датчиков. Есть определенные условия, при которых происходит вмешательство непосредственно в сам ЦП ЭБУ, для изменения величины стехиометрической величины, но такое вмешательство чревато серьезными последствиями. Такой вид увеличения мощности − удел недобросовестных сервисных центров и отчаявшихся автолюбителей. Есть и другие методы, которые мы подробно обсудим, это так называемы боксы или модули увеличения мощности. На сегодняшний день на мировом рынке существует четыре типа блоков:

1) Блок изменения импульсов управления форсунками;

2) Блок замещения режимов работы ТНВД;

3) Блок изменения показаний датчика давления топливного аккумулятора «топливной рейки»;

4) Модуль оптимизации режимов работы центрального процессора ЭБУ.

Давайте принципиально рассмотрим каждый.

1-й тип: «Блок изменения импульсов управления форсунками»

Самый распространенный тип блоков, встречается в 90% случаев. В данном случае используется способность блока изменять время (задержка, опережение) управляющего тока, который непосредственно участвует в открытии «иглы» форсунки. Таким образом, происходит прямое вмешательство в работу исполнительного каскада топливной системы. На первый взгляд, такая возможность увеличения мощности двигателя может показаться безобидным вмешательством. На самом же деле, это самый распространенный и далеко не безобидный метод. Установка блока происходит в разрыв управляющих проводов топливного инжектора. На простой элементной базе происходит задержка сигнала, что, в свою очередь, приводит к изменению угла впрыска, а экономия топлива происходит из того, что кратковременный импульс, посылаемый для предварительного открытия и после открытия (время такого импульса не более 0,0002 сек.), не улавливается блоком, а просто блокируется. Такие блоки не имеют своих высоковольтных каскадов для посылки импульса, поэтому возможности к трансляции кратковременных (не основных) импульсов у них невозможны.

Плюсы. Возможность установить на любой дизельный двигатель с электронной системой впрыска. Экономия топлива. Доступная элементная база, что снижает себестоимость в изготовлении. Универсальность в применении. Экономия топлива.

Минусы. Несоизмеримо высокая цена исходя из реальной стоимости компонентов. Экономия топлива за счет исключения из работы важных цикловых подач топлива, что снижает общий ресурс двигателя. Быстрый выход из строя сажевого фильтра, который связан с отсутствием импульса правильного сгорания топлива. Повышение эмиссии вредных веществ. Возможность проследить работу сервисной кампанией, после просмотра и изучения составления стехиометрической смеси и реального состояния всей выхлопной системы. Не быстрая установка.

Бренды: TuningBox, Power-Box, R-Box (использует одновременно технологии 1-го и 3-го типа), TBS, TUNIT (одна из модификаций), RedBOX, BlueBOX, GreenBOX, HOPA (использует одновременно технологии 1-го и 3-го типа), FGS-BOX.

2-й тип: «Блок замещения режимов работы ТНВД»

Такой тип увеличения мощности используется на переходных дизельных системах высокого давления. В основном это дизельные двигатели с насосом BOSCHVP 44 до 2008 года выпуска. В системе такого автомобиля не присутствует общая рампа высокого давления, аккумуляция высокого давления происходит непосредственно в самом насосе. Такой принцип работы не позволяет реализовать на топливном инжекторе более двух впрысков за такт. В таких системах используются электрогидравлические форсунки. Установка блока происходит в разрыв шины данных насоса ТНВД и ЭБУ. На элементарном уровне происходит занижение показаний датчика давления топлива, что, свою очередь, приводит к поднятию давления в корпусе насоса. В такой схеме управление давлением осуществляется при помощи электромагнитного клапана, который работает вне номинальных режимов и снижает общий ресурс ТНВД.

Плюсы. Увеличение мощности двигателя без снижения ресурса блока цилиндров. Нет прямого воздействия на количество эмиссии вредных веществ. Отсутствует возможность проследить установку со стороны сервисной кампании. Простая и недорогая элементная база. Быстрая установка. Экономия топлива.

Читайте также:  Группы поршней ваз 21213

Минусы. Снижение ресурса ТНВД. Снижение общего ресурса электромагнитной форсунки, за счет повышенного давления в магистрали. Плавающие обороты двигателя за счет постоянного повышенного давления в ТНВД даже на холостом ходу. После¬эксплуатационное дымление из выхлопной трубы. Бренды: TUNIT (одна из модификаций).

3-й тип: «Блок изменения показаний датчика давления топливного аккумулятора» В этом случае используется способ занижения показаний датчика давления топливного аккумулятора. Принципиальная схема такого вида вмешательства основана на электронной элементной базе аналогового вида, где процесс количества влияния на канал данных выбирается подстрочным резистором для оптимальной работы двигателя. Блок устанавливается в разрыв информационной шины датчика давления. Давление топлива в аккумуляторе поддерживается ТНВД всегда в номинальных пределах. Скорость реакции ЭБУ на любое изменение в топливном аккумуляторе мгновенно, ведь от информации о правильном давлении в аккумуляторе зависит точный расчет цикла открытия форсунки. Так вот, блок увеличения мощности использует возможность постоянной замены информации в канале данных о давлении. [info] Блок ЭБУ не выводит ошибку на табло приборов, так как дефектный сигнал вносит в электронную схему заниженное давление в рейке, но не ниже номинального значения, поэтому на таких боксах стоит потенциометр, которым опытным путем и выбирается минимально заниженное значение, при котором система не выдаст ошибку. Вследствие этого ЭБУ рассчитывает иной тайминг впрыска для двигателя, как будто (судя по информации от датчика давления) ТНВД потихоньку теряет свою мощность. Эффект экономии топлива и прирост мощности достигается за счет того, что циклы дополнительного и последующего впрысков не вносятся во все режимы работы двигателя. То есть продолжительность открытия форсунки увеличивается в момент главного впрыска, за счет исключения из расчетов всех остальных. В этой схеме, по аналогии с первой, используется та же разновидность подмены сигнала, только в первом описываемом способе идет замещение импульсного сигнала, а в этом происходит влияние на канал данных от датчика, что, в свою очередь, понижает выводимый сигнал до низкого значения.

Плюсы. Доступная недорогая элементная база и возможность самостоятельной сборки. Минимальное количество элементов и простота электрической схемы увеличивают надежность устройства. Быстрый монтаж. Не прослеживается использование сервисными организациями. Экономия топлива. Доступно везде к приобретению.

Минусы. Исключение из работы инжекторов дополнительного впрыска быстро выводит из строя сажевый фильтр или систему эмиссии отработанных газов. Заниженные показания давления выводят работу форсунок на перелив, что в будущем приводит к дымлению двигателя. Системы с электронной регулировкой давления ТНВД на привод подают больший крутящий момент, что неминуемо ведёт к быстрому износу насоса. Количество недовпрыскиваемого топлива со временем пропорционально количеству нагара на стенках цилиндра за счет постоянного, неправильного и бесконтрольного процесса сжигаемости горючей смеси.

Бренды: R-Box (использует одновременно технологии 1-го и 3-го типа), HOPA (использует одновременно технологии 1-го и 3-го типа), Spider.

4-й тип: «Модуль оптимизации режимов работы центрального процессора ЭБУ»

На сегодняшний день это самый современный метод. Работа модуля использует канал данных, благодаря которому возможно воздействовать на процесс расчета тайминга топливного инжектора ЦП. Если говорить подробнее, то в блоке стоит вычислительный модуль с программным обеспечением, который посылает в блок ЭБУ импульсный сигнал, позволяющий, не влияя и не меняя показаний любых основных датчиков, заставить увеличить тайминг форсунок на необходимое время, которое не превышает нормальных временных и запрограммированных величин. Так вот, ограничение воздействия на систему в целом происходит не выше рассчитанных временных характеристик. Установка модуля происходит в систему высокого давления. Модуль использует информацию с датчика давления и понимает, в каком на данном этапе работы находится двигатель. Иными словами, резкий всплеск давления понимается блоком, что необходимо увеличить подачу топлива. Плавный подъем давления говорит об отсутствии необходимости вмешательства в работу двигателя. Сложная программная база позволила использовать самостоятельное принятие решений модулем для исключения корректировки штатных параметров ЭБУ. Блок использует параллельный канал данных для доступа к логическому модулю ЭБУ.

Плюсы. Безопасен для двигателя. Нет аналоговой схема управления, внедренное программное обеспечение гарантирует исключение пропуска циклов подачи топлива. Быстрая и простая установка. В процессе работы нет ни одного сигнала, который видоизменяется, то есть не используется изменение или подмена сигнала с любого датчика. Возможность установить на любую систему commonrailс топливным аккумулятором (необходима перепрошивка). Работа модуля не влияет на систему ОГ в целом. Работа модуля не использует поднятие давления в топливной рейке. Цифровая схема управления. Соединение модуля не происходит в разрыв информационной линии датчиков.

Минусы. Высокая себестоимость изготовления, что и является причиной высокой стоимости устройства. Поддерживается ограниченный модельный ряд автомобилей. Нет моментального эффекта для получения максимальных показателей необходимо проехать минимум 500 километров для обучения модуля.

На сегодняшний день безопасным устройством увеличения мощности дизельных двигателей с аккумулятором высокого давления можно считать только блоки четвертого типа. Только они являются современным, безопасным и интеллектуальным способом увеличения мощности. Есть только один момент: это ограниченность ассортимента модельного ряда поддерживаемых автомобилей в связи с тем, что данные блоки появились на рынке не так давно.

Увеличение скорости хода современных судов требует применения мощных энергетических установок. И если для судовых паровых турбин фактор ограничения мощности не существует, то для судовых дизелей ограниченная мощность в одном агрегате является наиболее сложной проблемой.

Дизели судов небольшой и средней грузоподъемности ввиду высокого к. п. д. и малого удельного расхода топлива успешно конкурируют с другими двигателями, а для применения их на судах большой грузоподъемности необходимо увеличивать агрегатную мощность, для чего используют следующие способы:

  • увеличение рабочего объема цилиндра, т. е. его геометрических размеров: диаметра цилиндра D и хода поршня S;
  • увеличение частоты вращения коленчатого вала N об/мин;
  • увеличение количества цилиндров i ;
  • повышение среднего эффективного давления ре бар.

Каждый из этих способов имеет свои преимущества и недостатки и, главное, ограничения.

Увеличение геометрических размеров цилиндра вызывает возрастание массы подвижных деталей дизеля и, следовательно, инерционных усилий, отрицательно действующих на подшипники дизеля. Поэтому в настоящее время максимальные диаметры цилиндров судовых дизелей некоторых фирм имеют 1060 мм, а ход поршней достигает 2000 мм.

Увеличение частоты вращения коленчатого вала повышает мощность двигателя, однако отрицательно действует на другие показатели и прежде всего снижает моторесурс, увеличивает удельный расход топлива, а при очень высокой частоте вращения для поддержания высоких к. п. д. гребного винта требуется применение понижающего редуктора между дизелем и винтом. Наиболее целесообразная частота вращения коленчатого вала для тихоходных дизелей с прямой передачей крутящего момента на гребной винт — до 100 об/мин, для дизелей со средними диаметром цилиндра и ходом поршня—400—500 об/мин, для высокооборотных дизелей (в дизель-электрических передачах — 750—1000 об/мин.)

Читайте также:  Ручка кпп приора на ваз 2114

Увеличение количества цилиндров дизеля приводит к увеличению его длины и длины машинного отделения, поэтому у однорядных тихоходных дизелей i = 10 ÷ 12; у быстроходных двухрядных (V-образных) и трехрядных (W-образных) число цилиндров практически ограничено, соответственно i = 24 и i = 36. При большем i усложняется конструкция дизеля и его эксплуатация.

Наиболее перспективным направлением для роста агрегатной мощности судовых дизелей является повышение его среднего эффективного давления ре за счет применения наддува.

Наддувом называется принудительное заполнение рабочего объема цилиндра воздухом повышенного давления, что увеличивает массу заряда воздуха, позволяет повысить также массу заряда топлива с сохранением оптимального коэффициента избытка воздуха α.

Наддув дизеля может осуществляться с применением механического нагнетателя воздуха с приводом от коленчатого вала; такой наддув называется механическим. Прирост мощности при механическом наддуве достигает 30%. Однако если учесть, что примерно половина этой мощности расходуется на привод нагнетателя, а механический к. п. д. ухудшается из-за увеличения числа трущихся узлов дизеля, то такой наддув является малоэффективным и на новых дизелях не применяется.

Наиболее эффективен газотурбинный наддув. Суть его заключается в следующем: от выхлопных газов двигателя, имеющих значительную температуру и давление, приводится в действие специальная газовая турбина, на общем валу с которой находится центробежный нагнетатель воздуха (рис. 88, а). Нагнетатель забирает воздух из машинного отделения, сжимает его и направляет в ресивер дизеля. Газотурбинный наддув в чистом виде применяется только у четырехтактных дизелей и позволяет увеличить мощность дизеля до 100% при давлении наддувочного воздуха до 2 бар.

У четырехтактных дизелей при пуске, когда газовая турбина не работает, пополнение цилиндра зарядом свежего воздуха происходит за счет разности давлений при движении поршня вниз во время пуска.

Обязательным условием работы двухтактного дизеля является наличие в ресивере воздуха повышенного давления. Если учесть, что газовая турбина начинает работать только тогда, когда дизель разовьет частоту вращения до 25% номинальной, то для его пуска необходимо иметь специальное устройство. Таким устройством может быть электронагнетатель периодического действия. Электронагнетатели не получили большого распространения, так как они усложняют конструкцию дизеля, требуют установки специальных заслонок и т. д.

На двухтактных дизелях параллельно и последовательно с газотурбинными нагнетателями устанавливают различные механические устройства, которые облегчают пуск дизеля и позволяют получать более высокие давления наддувочного воздуха. Такой метод наддува называется комбинированным. В качестве дополнительных механических нагнетателей при газотурбинном наддуве могут применяться индивидуальные (для каждого цилиндра) или общие (для всех цилиндров) поршневые продувочные насосы или объемные (ротативные) нагнетатели. В последнее время многие фирмы («Бурмейстер и Вайн», МАН) используют для дополнительного сжатия воздуха и для получения продувочного воздуха при пуске дизеля подпоршневые пространства рабочих цилиндров. Двигатели некоторых фирм в дополнение к газотурбинному наддуву имеют механические нагнетатели и рабочие подпоршневые полости цилиндров. Причем как подпоршневые пространства, так и механические продувочные насосы могут работать параллельно или последовательно относительно друг друга или относительно газотурбонагнетателей. При этом, для увеличения массы заряда в единице объема и, следовательно, повышения эффекта наддува, применяют промежуточные холодильники наддувочного воздуха. Выпускные газы, выходящие из цилиндра дизеля по изолированному трубопроводу, попадают в сопловой аппарат газовой турбины, где внутреняя энергия преобразуется в кинетическую, а оттуда на лопатки газовой турбины, ротор которой находится на одном валу с центробежным нагнетателем. Воздух из машинного отделения забирается нагнетателем и направляется через промежуточный холодильник в цилиндр дизеля.

Если выхлопные газы попадают в общий сборник-коллектор, а затем в сопловой аппарат турбины, такая турбина называется турбиной постоянного давления. У многих четырехтактных и некоторых двухтактных дизелей выхлопные газы направляют по индивидуальным или общим газопроводам (группируя несколько цилиндров) и подают на лопатки газовой турбины в виде импульсов; такая турбина называется импульсной газовой турбиной, а наддув—импульсным. На рис. 88, б показана группировка газопроводов четырехтактного шестицилиндрового дизеля с порядком работы цилиндров 1-3-5-6-4-2; группы цилиндров 1, 4, 5 (А) и 2, 3, 6 (Б) не имеют одновременного выпуска газов, и, следовательно, газы попадают из отдельных цилиндров на лопатки газовой турбины в виде импульсов. При ином числе и порядке работы цилиндров требуется другая группировка цилиндров.

При наддуве у четырехтактных дизелей значительно изменяются фазы газораспределения: их подбирают таким образом, чтобы время наполнения цилиндра по углу поворота мотыля коленчатого вала значительно увеличивалось. Если, например, открытие впускного клапана у четырехтактных дизелей без наддува происходит за 15—30° до в. м. т., а закрытие — через 10—30° после н. м. т., то у дизелей с наддувом открытие происходит за 40—80° до в. м. т., а закрытие — через 20—40° н. м. т. Значительно раньше открывается, а позже закрывается (относительно мертвых точек) и выпускной клапан: из цилиндра необходимо за короткое время выпустить значительно большее количество газов, чем у дизелей без наддува. Для лучшей продувки цилиндра и охлаждения камеры сгорания увеличивают и время перекрытия клапанов.

Схема газотурбинного наддува двухтактного двигателя с прямоточно-клапанной продувкой и с электронагнетателем, который используется при пуске, а также в качестве аварийного, показана на рис. 89, а. Во время работы дизеля отработавшие газы дизеля из цилиндров по индивидуальным патрубкам попадают на лопатки импульсной газовой турбины; продувочный воздух через промежуточный холодильник попадает в подпоршневое пространство цилиндров, которое работает последовательно с газотурбонагнетателем, затем проходит для продувки и заполнения цилиндра. Такой тип наддува применяется на двигателях фирмы «Бурмейстер и Вайн». На последних моделях дизелей этой фирмы и ее лицензиатов (в том числе и БМЗ) не ставят электронагнетатели Э. Н., так как продувка цилиндров при пуске дизеля и при выходе из строя газотурбонагнетателей обеспечивается подпоршневыми полостями цилиндров.

У двигателей «Гетаверкен» с прямоточно-клапанной продувкой вместо подпоршневых пространств используются индивидуальные для каждого цилиндра продувочные насосы (см. рис. 89, б). Такие насосы имеют и некоторые дизели с контурной продувкой («Фиат»).

Фирма МАН наряду с устройством газотурбонагнетателей и использованием подпоршневых пространств цилиндров на некоторых типах дизелей устанавливает поршневые продувочные насосы, которые могут работать последовательно с подпоршневыми пространствами всех или нескольких цилиндров и параллельно с газотурбонагнетателями.

Комментировать
0
28 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Автоваз
0 комментариев
No Image Автоваз
0 комментариев
No Image Автоваз
0 комментариев
Adblock detector