No Image

Единицы измерения вязкости масла

СОДЕРЖАНИЕ
0
1 014 просмотров
20 августа 2019

1200 руб. за фотоотчёт

Платим за фотоотчёты по ремонту авто. Заработок от 10 000 руб/мес. Пишите:

Вязкость моторного масла — основная характеристика, по которой выбирают смазочную жидкость. Она может быть кинематической, динамической, условной и удельной. Однако чаще всего для выбора того или иного масла пользуются показателями кинематической и динамической вязкости. Их допустимые показатели четко указывает производитель двигателя автомобиля (зачастую допускается два или три значения). Правильный подбор вязкости обеспечивает нормальную работу двигателя с минимальными механическими потерями, надежную защиту деталей, нормальный расход топлива. Для того, чтобы подобрать оптимальную смазку, необходимо тщательно разобраться в вопросе вязкости моторного масла.

Классификация вязкости моторных масел

Вязкость (другое название — внутреннее трение) в соответствии с официальным определением — это свойство текучих тел оказывать сопротивление перемещению одной их части относительно другой. При этом выполняется работа, которая рассеивается в виде тепла в окружающую среду.

Вязкость — величина непостоянная, и она меняется в зависимости от температуры масла, имеющихся в его составе примесей, значения ресурса (пробега мотора на данном объеме). Однако эта характеристика определяет положение смазывающей жидкости в определенный момент времени. А при выборе той или иной смазывающей жидкости для двигателя необходимо руководствоваться двумя ключевыми понятиями — динамической и кинетической вязкостью. Их еще называют низкотемпературной и высокотемпературной вязкостью соответственно.

Исторически так сложилось, что автолюбители по всему миру определяют вязкость по так называемому стандарту SAE J300. SAE — это аббревиатура названия организации Сообщества автомобильных инженеров, которое занимается стандартизацией и унификацией различных систем и понятий, используемых в автомобилестроении. А стандарт J300 характеризует динамическую и кинематическую составляющие вязкости.

В соответствии с этим стандартом существует 17 классов масел, 8 из них зимних и 9 летних. Большинство масел, используемых в странах СНГ имеют обозначение XXW-YY. Где XX — обозначение динамической (низкотемпературной) вязкости, а YY — показатель кинематической (высокотемпературной) вязкости. Буква W означает английское слово Winter — зима. В настоящее время большинство масел являются всесезонными, что и находит отражение в таком обозначении. Восемь же зимних — это 0W, 2,5W, 5W, 7,5W, 10W, 15W, 20W, 25W, девять летних — 2, 5, 7,10, 20, 30, 40, 50, 60).

В соответствии со стандартом SAE J300 моторное масло должно соответствовать следующим требованиям:

  • Прокачиваемость. Особенно это актуально для работы двигателяпри низких температурах. Насос должен без проблем качать масло по системе, а каналы не забиваться загустевшей смазывающей жидкостью.
  • Работа при высоких температурах. Тут обратная ситуация, когда смазывающая жидкость не должно испаряться, угорать, и надежно защищать стенки деталей за счет образования на них надежной защитной масляной пленки.
  • Защита двигателя от износа и перегрева. Это касается работы во всех температурных диапазонах. Масло должно обеспечивать защиту от перегрева двигателя и механического износа поверхностей деталей во время всего эксплуатационного периода.
  • Удаление продуктов сгорания топлива из блока цилиндров.
  • Обеспечение минимальной силы трения между отдельными парами в двигателе.
  • Уплотнение зазоров между деталями цилиндро-поршневой группы.
  • Отведение тепла от трущихся поверхностей деталей двигателя.

На перечисленные свойства моторного масла динамическая и кинематическая вязкости влияют каждая по своему.

Динамическая вязкость

В соответствии с официальным определением, динамическая вязкость (она же абсолютная) характеризует силу сопротивления маслянистой жидкости, которая возникает во время движения двух слоев масла, удаленных на расстояние один сантиметр, и движущихся со скоростью 1 см/с. Единица ее измерения — Па•с (мПа•с). Имеет обозначение в английской аббревиатуре CCS. Тестирование отдельных образцов выполняется на специальном оборудовании — вискозиметре.

В соответствии со стандартом SAE J300 динамическая вязкость всесезонных (и зимних) моторных масел определяется так (по сути, температура проворачиваемости):

  • 0W — используется при температуре до -35°С;
  • 5W — используется при температуре до -30°С;
  • 10W — используется при температуре до -25°С;
  • 15W — используется при температуре до -20°С;
  • 20W — используется при температуре до -15°С.

Также стоит отличать температуру застывания и температуру прокачиваемости. В обозначении вязкости речь идет именно о прокачиваемости, то есть, состоянии. когда масло может беспрепятственно распространиться по масляной системе в допустимых температурных рамках. А температура его полного застывания обычно на несколько градусов ниже (на 5. 10 градусов).

Как вы можете видеть, для большинства регионов Российской Федерации масла со значением 10W и выше НЕ могут быть рекомендованы к использованию как всесезонное. Это находит прямое отражение в допусках различных автопроизводителей для машин, реализуемых на российском рынке. Оптимальными для стран СНГ будут масла с низкотемпературной характеристикой 0W или 5W.

Кинематическая вязкость

Другое ее название — высокотемпературная, с ней разбираться гораздо интереснее. Здесь, к сожалению, нет такой же четкой привязки, как у динамической, и значения имеют другой характер. Фактически эта величина показывает время, за которое некоторое количество жидкости выливается через отверстие определенного диаметра. Измеряется высокотемпературная вязкость в мм²/с (другая альтернативная единица измерения сантистокс — сСт, существует следующая зависимость — 1 сСт = 1 мм²/c = 0,000001 м²/c).

Наиболее популярные коэффициенты высокотемпературной вязкости по стандарту SAE — 20, 30, 40, 50 и 60 (перечисленные выше меньшие значения используются редко, например, их можно встретить у некоторых японских машинах, использующихся на внутреннем рынке этой страны). Если сказать в двух словах, то чем меньше этот коэффициент, тем масло жиже, и наоборот, чем выше — тем оно гуще. Лабораторные тесты проводят при трех температурах — +40°С, +100°С и +150°С. Прибор, при помощи которого проводят опыты — ротационный вискозиметр.

Три эти температуры выбраны не случайно. Они позволяют увидеть динамику изменения вязкости при различных условиях — нормальных (+40°С и +100°С) и критических (+150°С). Испытания проводятся и при других температурах (а по их результатам строятся соответствующие графики), однако эти температурные значения приняты за основные точки.

И динамическая и кинематическая вязкости напрямую зависят от плотности. Зависимость между ними следующая: динамическая вязкость является произведением кинематической вязкости на плотность масла при температуре +150 градусов по Цельсию. Это вполне соответствует законам термодинамики, ведь известно, что при повышении температуры плотность вещества уменьшается. А это значит, что при постоянной динамической вязкости кинематическая при этом будет снижаться (о чем соответствуют и ее низкие коэффициенты). И наоборот при снижении температуры кинематические коэффициенты увеличиваются.

Прежде чем перейти к описанию соответствий описанных коэффициентов, остановимся на таком понятии как High temperature/High shear viscosity (сокращенно — HT/HS). Это отношение температуры работы двигателя к высокотемпературной вязкости. Оно характеризует текучесть масла при испытуемой температуре, равной +150°С. Это значение было введено организацией API в конце 1980-х годов для лучшей характеристики выпускаемых масел.

Таблица высокотемпературной вязкости

Значение высокотемпературной вязкости по SAE J300 Вязкость, мм²/с (сСт) при температуре +100°C Минимальная вязкость в отношении HT/HS, мПа•с при температуре +150°C и скорости сдвига 1 млн/с
20 5,6…9,3 2,6
30 9,3…12,5 2,9
40 12,5…16,3 3,5 (для масел 0W-40; 5W-40;10W-40)
40 12,5…16,3 3,7 (для масел 15W-40; 20W-40; 25W-40)
50 16,3…21,9 3,7
60 21,9…26,1 3,7

Обратите внимание, что в новых версиях стандарта J300 масло с вязкостью SAE 20 имеет нижнюю границу, равную 6,9 сСт. Те же смазывающие жидкости, у которых это значение ниже (SAE 8, 12, 16), выделены в отдельную группу под названием энергосберегающие масла. По классификации стандарта ACEA они имеют обозначение A1/B1 (устаревший после 2016 года) и A5/B5.

Минимальная температура холодного пуска двигателя, °С Класс вязкости по SAE J300 Максимальная температура окружающей среды, °С
Ниже -35 0W-30 25
Ниже -35 0W-40 30
-30 5W-30 25
-30 5W-40 35
-25 10W-30 25
-25 10W-40 35
-20 15W-40 45
-15 20W-40 45

Индекс вязкости

Существует еще один интересный показатель — индекс вязкости. Он характеризует снижение кинематической вязкости с увеличением рабочей температуры масла. Это относительная величина, по которой можно условно судить о пригодности смазывающей жидкости работать при различных температурах. Его вычисляют эмпирически, сопоставляя свойства при разных температурных режимах. В хорошем масле этот индекс должен быть высоким, поскольку тогда его эксплуатационные характеристики мало зависят от внешних факторов. И наоборот, если индекс вязкости определенного масла маленький, то такой состав очень зависит от температуры и прочих рабочих условий.

Другими словами можно сказать, что при низком коэффициенте масло быстро разжижается. А из-за этого толщина защитной пленки становится очень маленькой, что приводит к значительному износу поверхностей деталей двигателя. А вот масла с высоким индексом способны работать в широком температурном диапазоне и полностью справляться со своими задачами.

Индекс вязкости напрямую зависит от химического состава масла. В частности, от количества в нем углеводородов и легкости используемых фракций. Соответственно, минеральные составы будут иметь самый плохой индекс вязкости, обычно он находится в диапазоне 120. 140, у полусинтетических смазывающих жидкостей аналогичное значение будет 130. 150, а “синтетика” может похвастаться самыми лучшими показателями — 140. 170 (иногда даже до 180).

Можно ли смешивать масла разной вязкости

Довольно распространенной бывает ситуация, когда автовладельцу по какой-либо причине нужно долить в картер двигателя иное масло, чем то, которое уже находится там, особенно при условии, что они имеют разные вязкости. Можно ли так делать? Ответим сразу — да, можно, однако с определенными оговорками.

Основное, о чем стоит сказать сразу — все современные моторные масла можно смешивать между собой (разной вязкости, синтетику, полусинтетику и минералку). Это не вызовет никаких негативных химических реакций в картере двигателя, не приведет к образованию осадка, вспениваемости или другим негативным последствиям.

Падение плотности и вязкости при повышении температуры

Доказать это очень легко. Как известно, все масла имеют определенную стандартизацию по API (американский стандарт) и ACEA (европейский стандарт). В одних и других документах четко прописаны требования безопасности, в соответствии с которыми допускается любое смешивание масел таким образом, чтобы это не вызывало каких-либо разрушительных последствий для двигателя машины. А поскольку смазывающий жидкости соответствуют этим стандартам (в данном случае не важно, какому именно классу), то и требование это соблюдается.

Другой вопрос — стоит ли смешивать масла, тем более разной вязкости? Делать такую процедуру допускается лишь в крайнем случае, например, если в данный момент (в гараже или на трассе) у вас нет подходящего (идентичного тому, что находится в данный момент в картере) масла. В этом экстренном случае можно долить смазывающую жидкость до нужного уровня. Однако дальнейшая эксплуатация зависит от разницы старого и нового масел.

Так, если вязкости очень близки, например, 5W-30 и 5W-40 (а тем более производитель и их класс одинаковы), то с такой смесью вполне можно ездить и дальше до очередной смены масла по регламенту. Аналогично допускается смешивать и соседние по значению динамической вязкости (например, 5W-40 и 10W-40. В результате вы получите некое среднее значение, которое зависит от пропорций того и другого состава (в последнем случае получится некий состав с условной динамической вязкостью 7,5W-40 при условии смешивания их одинаковых объемов).

Также допускается к длительной эксплуатации смесь близких по значению вязкости масел, которые однако относятся к соседним классам. В частности, допускается смешивать полусинтетику и синтетику, или минералку и полусинтетику. На таких составах можно ездить длительное время (хотя и нежелательно). А вот смешивать минеральное масло и синтетическое, хотя и можно, но лучше доехать на нем лишь до ближайшего автосервиса, и там уже выполнить полную замену масла.

Что касается производителей, то тут аналогичная ситуация. Когда у вас есть масла разной вязкости, но от одного производителя — смешивайте смело. Если же к хорошему и проверенному маслу (в котором вы уверены, что это не подделка) от известного мирового производителя (например, таких как SHELL или MOBIL) добавляете похожее как по вязкости, так и по качеству (в том числе стандартам API и ACEA), то в таком случае на машине тоже можно ездить еще длительное время.

Также обратите внимание на допуски автопроизводителей. Для некоторых моделей машин их производитель прямо указывает, что используемое масло должно обязательно соответствовать допуску. В случае, если добавляемая смазывающая жидкость не имеет такого допуска, то длительное время на такой смеси ездить нельзя. Нужно как можно быстрее выполнить замену, и залить смазку с необходимым допуском.

Иногда возникают ситуации, когда смазывающую жидкость нужно залить в дороге, и вы подъезжаете к ближайшему автомагазину. Но в его ассортименте нет такой смазывающей жидкости, как и в картере вашего авто. Что делать в таком случае? Ответ простой — залить аналогичное или лучше. Например, вы пользуете полусинтетикой 5W-40. В этом случае желательно подобрать 5W-30. Однако тут нужно руководствоваться теми же соображениями, которые были приведены выше. То есть, масла не должны сильно отличаться друг от друга по характеристикам. В противном случае полученную смесь нужно как можно быстрее заменить на новый подходящий для данного двигателя смазывающий состав.

Вязкость и базовое масло

Многих автолюбителей интересует вопрос о том, какую вязкость имеет синтетическое, полусинтетическое и полностью минеральное масло. Он возникает потому что существует распространенное заблуждение, что у синтетического средства якобы вязкость лучше и именно поэтому «синтетика» лучше подходит для двигателя автомобиля. И напротив, якобы минеральные масла обладают плохой вязкостью.

На самом деле это не совсем так. Дело в том, что обычно минеральное масло само по себе гораздо гуще, поэтому на полках магазинов такая смазывающая жидкость зачастую встречается с показаниями вязкости такими как 10W-40, 15W-40 и так далее. То есть, маловязких минеральных масел практически не бывает. Другое дело синтетика и полусинтетика. Использование в их составах современных химических присадок позволяет добиться снижения вязкости, именно поэтому масла, например, с популярной вязкостью 5W-30 могут быть как синтетическими, так и полусинтетическими. Соответственно, при выборе масла нужно обращать внимание не только на значение вязкости, но и на тип масла.

Качество конечного продукта во многом зависит от базы. Моторные масла не исключение. При производстве масел для двигателя автомобиля используют 5 групп базовых масел. Каждое из них отличается способом добывания, качеством и характеристиками
Подробнее

У различных производителей в ассортименте можно найти самые разные смазывающие жидкости, относящиеся к разным классам, однако имеющие одинаковую вязкость. Поэтому при покупке той или иной смазывающей жидкости выбор его вида — это отдельный вопрос, который нужно рассматривать, исходя из состояния двигателя, марки и класса машины, стоимости непосредственно масла и так далее. Что касается приведенных выше значений динамической и кинематической вязкости, то они имеют одинаковое обозначение по стандарту SAE. Но вот стабильность и долговечность защитной пленки у разных типов масел будут другими.

Выбор масла

Подбор смазывающей жидкости для конкретного двигателя машины — процесс достаточно трудоемкий, поскольку нужно проанализировать много информации для принятия правильного решения. В частности, кроме непосредственно вязкости желательно поинтересоваться физическими характеристиками моторного масла, его классами по стандартам API и ACEA, тип (синтетика, полусинтетика, минералка), конструкцию двигателя и много чего еще.

Какое масло лучше заливать в двигатель

Выбор моторного масла дол основывается на вязкости, спецификации API, АСЕА, допусках и тех важных параметрах, на которые вы никогда не обращаете внимание. Подбирать нужно по 4 основным параметрам.
Подробнее

Что касается первого шага — выбора вязкости нового моторного масла, то стоит отметить, что изначально нужно исходить из требований завода-изготовителя двигателя. Не масла, а двигателя! Как правило, в мануале (технической документации) имеется конкретная информация о том, смазывающие жидкости какой вязкости допускается использовать в силовом агрегате. Зачастую допускается применять два или три значения вязкости (например, 5W-30 и 5W-40).

Обратите внимание, что толщина образуемой защитной масляной пленки не зависит от ее прочности. Так, минеральная пленка выдерживает нагрузку около 900 кг на квадратный сантиметр, а такая же пленка, образованная современными синтетическими маслами на основе эстеров уже выдерживает нагрузку 2200 кг на квадратный сантиметр. И это при одинаковой вязкости масел.

Что будет, если неправильно подобрать вязкость

В продолжение предыдущей темы перечислим возможные неприятности, которые могут возникнуть в случае, если будет выбрано масло в неподходящей для данного вязкостью. Так, если оно слишком густое:

  • Рабочая температура двигателя будет повышаться, поскольку тепловая энергия будет отводиться хуже. Однако при езде на невысоких оборотах и/или в холодную погоду это можно не считать критическим явлением.
  • При езде на высоких оборотах и/или при высокой нагрузке на двигатель температура может значительно возрасти, из-за чего возникнет значительный износ как отдельных частей, так и двигателя в целом.
  • Высокая температура двигателя приводит к ускоренному окислению масла, из-за чего оно быстрее изнашивается и теряет свои эксплуатационные свойства.

Однако если залить в двигатель очень жидкое масло, то также могут возникнуть проблемы. Среди них:

  • Масляная защитная пленка на поверхности деталей будет очень тонкой. Это значит, что детали не получают должную защиту от механического износа и воздействия высоких температур. Из-за этого детали быстрее изнашиваются.
  • Большое количество смазочной жидкости обычно уходит в угар. То есть, будет иметь место большой расход масла.
  • Возникает риск появления так называемого клина мотора, то есть, его выхода его из строя. А это очень опасно, поскольку грозит сложными и дорогостоящими ремонтами.

Поэтому, чтобы избежать подобных неприятностей старайтесь подбирать масло той вязкости, которую допускает производитель двигателя машины. Этим вы не только продлите срок его эксплуатации, но и обеспечите нормальный режим его работы в разных режимах.

Заключение

Всегда придерживайтесь рекомендаций автопроизводителя и заливайте смазочную жидкость с теми значениями динамической и кинематической вязкости, которая прямо им указана. Незначительные отклонения допускаются лишь в редких и/или аварийных случаях. Ну а выбор того или иного масла нужно проводить по нескольким параметрам, а не только по вязкости.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Плотность Молекулярная масса ДНП Критические параметры Вязкость Поверхностное натяжение
Фактор сжимаемости Летучесть (фугитивность) Оптические свойства Электрические свойства

Понятие вязкости

Вязкость является важнейшей физической константой, характеризующей эксплуатационные свойства котельных и дизельных топлив, нефтяных масел, ряда других нефтепродуктов. По значению вязкости судят о возможности распыления и прокачиваемости нефти и нефтепродуктов.

Различают динамическую, кинематическую, условную и эффективную (структурную) вязкость.

[μ], или внутренним трением, называют свойства реальных жидкостей оказывать сопротивление сдвигающим касательным усилиям. Очевидно, это свойство проявляется при движении жидкости. Динамическая вязкость в системе СИ измеряется в [Н·с/м 2 ]. Это сопротивление, которое оказывает жидкость при относительном перемещении двух ее слоев поверхностью 1 м 2 , находящихся на расстоянии 1 м друг от друга и перемещающихся под действием внешней силы в 1 Н со скоростью 1 м/с. Учитывая, что 1 Н/м 2 = 1 Па, динамическую вязкость часто выражают в [Па·с] или [мПа·с]. В системе СГС (CGS) размерность динамической вязкости – [дин·с/м 2 ]. Эта единица называется пуазом (1 П = 0,1 Па·с).

Переводные множители для расчета динамической [μ] вязкости.

Единицы Микропуаз (мкП) Сантипуаз (сП) Пуаз ([г/см·с]) Па·с ([кг/м·с]) кг/(м·ч) кг·с/м 2
Микропуаз (мкП) 1 10 -4 10 -6 10 7 3,6·10 -4 1,02·10 -8
Сантипуаз (сП) 10 4 1 10 -2 10 -3 3,6 1,02·10 -4
Пуаз ([г/см·с]) 10 6 10 2 1 10 3 3,6·10 2 1,02·10 -2
Па·с ([кг/м·с]) 10 7 10 3 10 1 3 3,6·10 3 1,02·10 -1
кг/(м·ч) 2,78·10 3 2,78·10 -1 2,78·10 -3 2,78·10 -4 1 2,84·10 -3
кг·с/м 2 9,81·10 7 9,81·10 3 9,81·10 2 9,81·10 1 3,53·10 4 1

[ν] называется величина, равная отношению динамической вязкости жидкости [μ] к ее плотности [ρ] при той же температуре: ν = μ/ρ. Единицей кинематической вязкости является [м 2 /с] – кинематическая вязкость такой жидкости, динамическая вязкость которой равна 1 Н·с/м 2 и плотность 1 кг/м 3 (Н = кг·м/с 2 ). В системе СГС (CGS) кинематическая вязкость выражается в [см 2 /с]. Эта единица называется стоксом (1 Ст = 10 -4 м 2 /с; 1 сСт = 1 мм 2 /с).

Переводные множители для расчета кинематической [ν] вязкости.

Единицы мм 2 /с (сСт) см 2 /с (Ст) м 2 /с м 2 /ч
мм 2 /с (сСт) 1 10 -2 10 -6 3,6·10 -3
см 2 /с (Ст) 10 2 1 10 -4 0,36
м 2 /с 10 6 10 4 1 3,6·10 3
м 2 /ч 2,78·10 2 2,78 2,78·10 4 1

Нефти и нефтепродукты часто характеризуются , за которую принимается отношение времени истечения через калиброванное отверстие стандартного вискозиметра 200 мл нефтепродукта при определенной температуре [t] ко времени истечения 200 мл дистиллированной воды при температуре 20°С. Условная вязкость при температуре [t] обозначается знаком ВУ, и выражается числом условных градусов.

Условная вязкость измеряется в градусах ВУ (°ВУ) (если испытание проводится в стандартном вискозиметре по ГОСТ 6258-85), секундах Сейболта и секундах Редвуда (если испытание проводится на вискозиметрах Сейболта и Редвуда).

Перевести вязкость из одной системы в другую можно при помощи номограммы.

В нефтяных дисперсных системах в определенных условиях в отличие от ньютоновских жидкостей вязкость является переменной величиной, зависящей от градиента скорости сдвига. В этих случаях нефти и нефтепродукты характеризуются эффективной или структурной вязкостью:

Для углеводородов вязкость существенно зависит от их химического состава: она повышается с увеличением молекулярной массы и температуры кипения. Наличие боковых разветвлений в молекулах алканов и нафтенов и увеличение числа циклов также повышают вязкость. Для различных групп углеводородов вязкость растет в ряду алканы – арены – цикланы.

Для определения вязкости используют специальные стандартные приборы – вискозиметры, различающиеся по принципу действия.

Кинематическая вязкость определяется для относительно маловязких светлых нефтепродуктов и масел с помощью капиллярных вискозиметров, действие которых основано на текучести жидкости через капилляр по ГОСТ 33-2000 и ГОСТ 1929-87 (вискозиметр типа ВПЖ, Пинкевича и др.).

Для вязких нефтепродуктов измеряется условная вязкость в вискозиметрах типа ВУ, Энглера и др. Истечение жидкости в этих вискозиметрах происходит через калиброванное отверстие по ГОСТ 6258-85.

Между величинами условной °ВУ и кинематической вязкости существует эмпирическая зависимость:

    для ν от 1 до 120 мм 2 /с:

Вязкость наиболее вязких, структурированных нефтепродуктов определяется на ротационном вискозиметре по ГОСТ 1929-87. Метод основан на измерении усилия, необходимого для вращения внутреннего цилиндра относительно наружного при заполнении пространства между ними испытуемой жидкостью при температуре t.

Кроме стандартных методов определения вязкости иногда в исследовательских работах используются нестандартные методы, основанные на измерении вязкости по времени падения калибровочного шарика между метками или по времени затухания колебаний твердого тела в испытуемой жидкости (вискозиметры Гепплера, Гурвича и др.).

Во всех описанных стандартных методах вязкость определяют при строго постоянной температуре, поскольку с ее изменением вязкость существенно меняется.

Зависимость вязкости от температуры

Зависимость вязкости нефтепродуктов от температуры является очень важной характеристикой как в технологии переработки нефти (перекачка, теплообмен, отстой и т. д.), так и при применении товарных нефтепродуктов (слив, перекачка, фильтрование, смазка трущихся поверхностей и т. д.).

С понижением температуры вязкость их возрастает. На рисунке приведены кривые изменения вязкости в зависимости от температуры для различных смазочных масел.

Общим для всех образцов масел является наличие областей температур, в которых наступает резкое повышение вязкости.

Существует много различных формул для расчета вязкости в зависимости от температуры, но наиболее употребляемой является эмпирическая формула Вальтера:

Дважды логарифмируя это выражение, получаем:

По данному уравнению Е. Г. Семенидо была составлена номограмма на оси абсцисс которой для удобства пользования отложена температура, а на оси ординат – вязкость.

По номограмме можно найти вязкость нефтепродукта при любой заданной температуре, если известна его вязкость при двух других температурах. В этом случае значение известных вязкостей соединяют прямой и продолжают ее до пересечения с линией температуры. Точка пересечения с ней отвечает искомой вязкости. Номограмма пригодна для определения вязкости всех видов жидких нефтепродуктов.

Для нефтяных смазочных масел очень важно при эксплуатации, чтобы вязкость как можно меньше зависела от температуры, поскольку это обеспечивает хорошие смазывающие свойства масла в широком интервале температур, т. е. в соответствии с формулой Вальтера это означает, что для смазочных масел, чем ниже коэффициент В, тем выше качество масла. Это свойство масел называется индексом вязкости, который является функцией химического состава масла. Для различных углеводородов по-разному меняется вязкость от температуры. Наиболее крутая зависимость (большая величина В) для ароматических углеводородов, а наименьшая – для алканов. Нафтеновые углеводороды в этом отношении близки к алканам.

Существуют различные методы определения индекса вязкости (ИВ).

Для всех масел с ν100 2 /с вязкости (ν, ν1 и ν3) определяют по таблице ГОСТ 25371-97 на основе ν40 и ν100 данного масла. Если масло более вязкое (ν100 > 70 мм 2 /с), то величины, входящие в формулу, определяют по специальным формулам, приведенным в стандарте.

Значительно проще определять индекс вязкости по номограммам.

Индекс вязкости – общепринятая величина, входящая в стандарты на масла во всех странах мира. Недостатком показателя индекса вязкости является то, что он характеризует поведение масла лишь в интервале температур от 37,8 до 98,8°С.

Многими исследователями было подмечено, что плотность и вязкость смазочных масел до некоторой степени отражают их углеводородный состав. Был предложен соответствующий показатель, связывающий плотность и вязкость масел и названный вязкостно-массовой константой (ВМК). Вязкостно-массовая константа может быть вычислена по формуле Ю. А. Пинкевича:

В области низких температур смазочные масла приобретают структуру, которая характеризуется пределом текучести, пластичности, тиксотропностью или аномалией вязкости, свойственными дисперсным системам. Результаты определения вязкости таких масел зависят от их предварительного механического перемешивания, а также от скорости истечения или от обоих факторов одновременно. Структурированные масла, так же как и другие структурированные нефтяные системы, не подчиняются закону течения ньютоновских жидкостей, согласно которому изменение вязкости должно зависеть только от температуры.

Масло с неразрушенной структурой имеет значительно большую вязкость, чем после ее разрушения. Если понизить вязкость такого масла путем разрушения структуры, то в спокойном состоянии эта структура восстановится и вязкость примет первоначальное значение. Способность системы самопроизвольно восстанавливать свою структуру называется . С увеличением скорости течения, точнее градиента скорости (участок кривой 1), структура разрушается, в связи с чем вязкость вещества снижается и доходит до определенного минимума. Этот минимум вязкости сохраняется на одном уровне и при последующем возрастании градиента скорости (участок 2) до появления турбулентного потока, после чего вязкость вновь нарастает (участок 3).

Зависимость вязкости от давления

Вязкость жидкостей, в том числе и нефтепродуктов, зависит от внешнего давления. Изменение вязкости масел с повышением давления имеет большое практическое значение, так как в некоторых узлах трения могут возникать высокие давления.

Зависимость вязкости от давления для некоторых масел иллюстрируется кривыми, вязкость масел с повышением давления изменяется по параболе. При давлении Р она может быть выражена формулой:

В нефтяных маслах меньше всего с повышением давления изменяется вязкость парафиновых углеводородов и несколько больше нафтеновых и ароматических. Вязкость высоковязких нефтепродуктов с увеличением давления повышается больше, чем вязкость маловязких. Чем выше температура, тем меньше изменяется вязкость с повышением давления.

При давлениях порядка 500 – 1000 МПа вязкость масел возрастает настолько, что они теряют свойства жидкости и превращаются в пластичную массу.

Для определения вязкости нефтепродуктов при высоком давлении Д.Э.Мапстон предложил формулу:

На основе этого уравнения Д.Э.Мапстоном разработана номограмма, при пользовании которой известные величины, например ν0 и Р, соединяют прямой линией и отсчет получают на третьей шкале.

Вязкость смесей

При компаундировании масел часто приходится определять вязкость смесей. Как показали опыты, аддитивность свойств проявляется лишь в смесях двух весьма близких по вязкости компонентов. При большой разности вязкостей смешиваемых нефтепродуктов, как правило, вязкость меньше, чем вычисленная по правилу смешения. Приближенно вязкость смеси масел можно рассчитать, если заменить вязкости компонентов их обратной величиной – подвижностью (текучестью) ψсм:

Для определения вязкости смесей можно также пользоваться различными номограммами. Наибольшее применение нашли номограмма ASTM и вискозиграмма Молина-Гурвича. Номограмма ASTM базируется на формуле Вальтера. Номограмма Молина-Гуревича составлена на основании экспериментально найденных вязкостей смеси масел А и В, из которых А обладает вязкостью °ВУ20 = 1,5, а В – вязкостью °ВУ20 = 60. Оба масла смешивались в разных соотношениях от 0 до 100% (об.), и вязкость смесей устанавливалась экспериментально. На номограмме нанесены значения вязкости в уел. ед. и в мм 2 /с.

Вязкость газов и нефтяных паров

Вязкость углеводородных газов и нефтяных паров подчиняется иным, чем для жидкостей, закономерностям. С повышением температуры вязкость газов возрастает. Эта закономерность удовлетворительно описывается формулой Сазерленда:

Для приближенных расчетов принимаем, что С = 1,22·Ткип. Более точные значения С и m.

Для расчета вязкости индивидуальных углеводородных газов применяется формула:

Вязкость газов, нефтяных паров можно определить по графическим зависимостям:

Вязкость природных газов известной молекулярной массы или относительной плотности (по воздуху) при атмосферном давлении и заданной температуре может быть определена по кривым, представленным на рисунке.

Как видно из рисунка, с повышением относительной плотности и понижением температуры вязкость газа уменьшается.

Вязкость газов мало зависит от давления в области до 5-6 МПа. При более высоких давлениях она растет и при давлении около 100 МПа увеличивается в 2-3 раза по сравнению с вязкостью при атмосферном давлении. Для определения вязкости при повышенных давлениях пользуются эмпирическими графиками.

2.2. Свойства капельных жидкостей: сжимаемость,

температурное расширение, испаряемость, силы поверхностного натяжения.

2.3. Основные свойства газов

2.1. Основные свойства капельных жидкостей

Основная система единиц, применяемая в настоящее время это система СИ. Основными механическими единицами системы СИ являются: длина, измеряемая в метрах, масса, измеряемая в кг, время, измеряемое в секундах.

1. Плотностью называется масса вещества, содержащаяся в единице объема. Различают абсолютную и относительную плотность. Абсолютная плотность для однородной жидкости равняется величине массыМ жидкости в объемеV,поделенной на величину этого объемаV

Плотность измеряется в системе СИ в кг/м 3 , плотность пресной воды при 4ºС составляетρв= 1000 кг/м 3 , морской водыρмв= 1025 кг/м 3 , плотность рабочей жидкости МГ-30 при 20 ºСρрж= 880 кГ/м 3 , плотность воздуха –ρвз= 1,25 кг/м 3 .

Относительной плотностью называется отношение плотности жидкости при заданной температуре к плотности воды при температуре 4 °С, поскольку масса 1 л воды при 4 °С равна 1 кг. Относительная плотность обозначается δ .

Например, если 1 л бензина при 20 °С имеет массу 730 г, а 1 л воды при 4 °С – 1000 г, то относительная плотность бензина будет равна 0,73.

Относительная плотность для ртути δрт= ρртв= 13600/1000 = 13,6, для воздуха δвз= ρвзв = 0,00125, для рабочей жидкости- масла на минеральной основе δж= ρжв= 880/1000 = 0,88

2. Удельным весомназывают вес единицы объема жидкости. Для однородной жидкости удельный вес равняется величине весаG жидкости,поделенной на величину объемаV, который она занимает

Удельный вес измеряется в системе СИ в Н/м 3 .

В системе СИ удельный вес воды при 4ºС составляет γ = ρв*g = 1000*9,81 = 9,81*10 3 Н/м 3 , удельный вес рабочей жидкости МГ-30 при 20 ºС составляетγ = 880*9,81 = 8,64*10 3 Н/м 3 .

В технической системе МКГСС – длина в метрах, основная единица – сила в килограммах силы(кГс), время в секундах.

Удельный вес воды в системе МКГСС равен γв= 1000 кГс/м 3 , а рабочей жидкости γрж= 880 кГс/м 3 .

Если жидкость неоднородна, то формулы (2.1) и (2.2) определяют средние значения удельного веса или плотности.

3. Вязкость жидкости.

Вязкостью жидкости называется способность сопротивляться деформации (сдвигу ее слоев).

Трение при движении вязкой жидкости было открыто Ньютоном, он высказал гипотезу о возникновении касательных напряжений между слоями жидкости.

Вязкость есть свойство противоположное текучести: в сравнении с водой более вязкие жидкости, такие как рабочие жидкости для гидросистем, являются менее текучими, более вязкими.

Кроме обычных подвижных жидкостей существуют очень вязкие жидкости, сопротивление малым деформациям которых значительно, но в состоянии покоя равно нулю. По мере увеличения вязкости такая жидкость все больше похожа на твердое тело. К таким жидкостям относится асфальт. Если бочку с горячим асфальтом опрокинуть, он весь вытечет за некоторое время и примет форму лепешки, с течением времени по этой лепешке можно будет ходить, а при ударе она разлетается на куски.

Для медленной деформации обычной жидкости необходимы весьма малые силы, при быстрой деформации жидкость подобно твердому телу оказывает значительное сопротивление. Но как только движение жидкости прекращается, это сопротивление исчезает.

При течении вязкой жидкости из-за тормозящего влияния неподвижного дна и трения слои жидкости будут двигаться с разными скоростями, значения которых возрастают при удалении от твердого дна (рис. 2.1). Скорость Vтем меньше, чем ближе слой жидкости к неподвижной стенке, приу = 0 , V = 0.

Рассмотрим два слоя жидкости, двигающиеся на расстоянии Δу. Слой А движется со скоростью V, слой В со скоростьюV + ΔV. Из-за разности скоростей слой В сдвигается относительно слоя А на величинуΔV(за единицу времени). ВеличинаΔVявляется абсолютным сдвигом слоя В, а отношение Δυ/Δy – относительный сдвиг или градиент скорости. При сдвиге аналогично явлению сдвига в твердых телах появляются касательные напряжения τ.

Ньютон получил зависимость между касательным напряжением и деформацией

При стремлении величины Δy→0слои будут бесконечно сближаться и можно перейти к дифференциалам.

Закон Ньютона о трении в жидкости :

Коэффициент пропорциональности μ в формуле для определения касательного напряжения в жидкости называется динамической(абсолютной) вязкостью и характеризует сопротивляемость жидкости сдвигу.

Экспериментально этот закон был подтвержден нашим соотечественником профессором Н.П. Петровым в 1883 г.

Из закона трения выражаемого уравнением (2.4), следует, что напряжения трения возможны только в движущейся жидкости, вязкость проявляется при течении жидкости, в покоящейся жидкости касательные напряжения считаются равными нулю.

Сила сопротивления сдвигу Т называется силой внутреннего трения, при постоянстве касательного напряжения на поверхности S. Эта сила выражается формулой Ньютона

где μ— тот же коэффициент пропорциональности, что и в формуле для касательного напряжения в жидкости. Знак перед значением силы выбирается в зависимости от знака градиента так, чтобы сила имела положительное значение.

Размерность динамической вязкости можем получить из формулы для касательного напряжения

В системе СИ единица динамической вязкости называется «Паскаль- секунда».

В системе СГС единица динамической вязкости называется «Пуаз» в честь французского врача Пуазейля, исследовавшего законы движения крови в сосудах. 1 Пуаз = 1 (дина*сек)/см 2 .

Единица динамической вязкости

(сантиметр, грамм массы, секунда)

Наряду с понятием динамической вязкости в гидравлике используют понятие кинематической вязкости.

Кинематической вязкостью называется отношение динамической вязкости к плотности

В размерности кинематической вязкости отсутствуют единицы силы, ее легко измерить с помощью приборов носящих название вязкозиметров.

Единицей измерения кинематической вязкости с системе СИ является м 2 /с, например вода приt= 20°С имеет кинематическую вязкость 10 -6 м 2 /с. В системе СГС единица измерения кинематической вязкости равна 1 см 2 /с и называется Стокс(Ст) в честь английского ученого Стокса, сотая доля стокса называется сантиСтоксом (сСт).

Единица кинематической вязкости

1 м 2 /с = 10 4 см 2 /с(Стокс) =

=10 6 сСт – сантиСтокс.

(сантиметр, грамм массы, секунда)

1 см 2 /с(Ст)= 1 Стокс,

1 Ст = 10 -4 м 2 /с 1 сСт = 10 -6 м 2 /с

Рабочая жидкость на минеральной основе МГ-30 имеет вязкость при t= 20°С равную 150 сСт = 150 мм 2 /с = 1,5Ст = 1,5 см 2 /с = 1,5е-4 м 2 /с.

Вязкость капельных жидкостей при увеличении температуры уменьшается. Вязкость газов, с увеличением температуры возрастает. Объясняется это различием молекулярного строения. В жидкостях молекулы расположены гораздо ближе друг к другу, чем в газах, и вязкость вызывается силами молекулярного сцепления.

Эти силы с увеличением температуры уменьшаются, поэтому вязкость падает. В газах вязкость обусловлена, главным образом, беспорядочным тепловым движением молекул, интенсивность которого увеличивается с повышением температуры. Поэтому вязкость газов с увеличением температуры возрастает.

Обычно влияние температуры на вязкость оценивается с помощью экспериментальных графиков в справочной литературе. Однако, влияние температуры и давления на вязкость жидкостей можно оценить с помощью экспоненциальных зависимости, связывающей вязкость и температуру, а также давление и температуру.

Вязкость рабочей жидкости при увеличении температуры уменьшается, при этом теряется смазывающая способность рабочей жидкости. Возникает износ, прогорание трущихся поверхностей насосов и подшипников, что может привести к авариям. Допустимый верхний предел применения рабочей жидкости ВМГЗ(зимнее) равен 65ºС, вязкость 8 сСт, РЖ –МГ-30(летнее) 80 ºС.

Зависимость вязкости от давления проявляется при давлениях в несколько десятков МПа. С увеличением давления вязкость большинства жидкостей возрастает.

Например, если вязкость воды при давлении 1 атм и 20 ºС принять за единицу, при той же температуре и давлении 100 МПа она вырастет в 4 раза.

Наиболее распространенным является вискозиметр Энглера, который представляет собой цилиндрический сосуд, окруженный водяной ванной определенной температуры с насадком, встроенным в дно. Градус Энглера, назван по имени немецкого химика Энглера, у нас он называется внесистемная единица условной вязкости жидкостей или градус ВУ, и применяется в технике для оценки вязкости жидкостей.

Для измерения условий вязкости приняты градусы Энглера (°Е), которые представляют собой показания вискозиметра при 20, 50 и 100°С и обозначаются соответственно °E20;°E50 и °E100 .

Значение вязкости в градусах Энглера, например, °E20 есть отношение времени истечения tж через отверстие вязкозиметра с объемом V = 200 см 3 испытуемой жидкости к времени истечения такого же количества дистиллированной воды tвод = tвод= 51,6 с при 20 °С.

Для пересчета градусов Энглера в стоксы в случае минеральных масел применяют формулу

4. Сжимаемость свойство жидкости изменять объем под действием давления, характеризуетсякоэффициентом объемного сжатия, который представляет собой относительное изменение объема ΔV=V1V2 при изменении давления ΔРна единицу давления,V1 – первоначальный объем,V2– конечный объем .

(2.4)

Коэффициент объемного сжатия в системе СИ измеряется в м 2 /Н или Па -1 .

Увеличению давления Р21соответствует уменьшение объемаV2 2 такая же, как размерность давления.

Используя объемный модуль упругости Ки разности объемов можно записать в зависимость, которую называют обобщенным законом Гука для жидкости.

βт = (2.8)

Рассматривая разности ΔV= V2V1иΔТ= Т2 — Т1и, принимаяβт постоянным, получаем объем жидкости при изменении температуры

учитывая равенство ρ = М/V,находим приближенную формулу для определения плотности жидкости при изменении температуры

Для воды коэффициент βт возрастает с увеличением давления и температуры, при при 100 и 10 МПа,βт = 700*10 -6 . Для минеральных масел в диапазоне давлений от 0 до 15 МПаβт можно принимать равным 800*10 -6 .

Например, объем гидросистемы составлял 1200 л=1,2 м3, исходная температура была 20°С. Гидросистема во время работы нагрелась до 40°С, разница в температуре составила 20°С,

Объем увеличился на 1,219- 1,2 = 0,019м3 = 1,9л.

6.Сопротивление растяжениювнутри капельных жидкостей по молекулярной теории может быть весьма значительно. При опытах с тщательно очищенной и дегазированной водой в ней были получены кратковременные напряжения растяжения до 23—28 МПа. Однако технически чистые жидкости, содержащие взвешенные твердые частицы и мельчайшие пузырьки газов, не выдерживают даже незначительных напряжений растяжения. Поэтому считают, что напряжения растяжения в капельных жидкостях невозможны.

7.Силы поверхностного натяжения. Свободная поверхность жидкости горизонтальна по всей поверхности раздела между жидкой и газообразной средой, кроме точек вблизи твердой стенки сосуда, где проявляются молекулярные силы взаимодействия твердого стенок с жидкостью рис.2.4а. На поверхности раздела жидкости и воздуха действуют силы поверхностного натяжения, стремящиеся придать объему жидкости сферическую форму. Это явление проявляется также при выливании капли жидкости на твердую поверхность, рис.2.4б.

Поверхность у стенок сосуда искривлена (рис.2.4), и искривление сопровождается появлением дополнительного давления. Касательная к проекции сферической поверхности, направленная в сторону стенок трубки в зависимости от смачивания (рис.2г) или не смачивания (рис.2д) твердой поверхности жидкостью может иметь разный краевой угол θ, соответствующий смачиванию или его отсутствию.

Трубка небольшого диаметра, в которой отсутствует горизонтальный участок поверхности раздела, называется капилляром. В этой трубке дополнительное давление может поднимать уровень жидкости (при смачивании) или опускать его.

Дополнительное давление, возникающее в капилляре определяется формулой

где σ— коэффициент поверхностного натяжения жидкости;r — радиус сферы, которая формируется в соответствие со свойствами жидкости и воздействием внешней среды и приблизительно равна радиусу капилляра.

Коэффициент σ, размерность которого Н/м, имеет следующие значения для разных жидкостей, граничащих с воздухом при температуре 20°С:

для воды 73*10 -4 ,

для спирта 22*10 -4 ,

для керосина 27*10 -4 ,

для ртути 460*10 -4 .

С ростом температуры поверхностное натяжение уменьшается.

Высоту подъема смачивающей жидкости или опускания несмачивающей жидкости в стеклянной трубке диаметром dопределяют по формуле для полусферического мениска

С явлением капиллярности приходится сталкиваться при использовании стеклянных трубок в приборах для измерения давления, а также в некоторых случаях истечения жидкости. Большое значение приобретают силы поверхностного натяжения в жидкости, находящейся в условиях невесомости. Этим явлением объясняется всасывающее действие промокательной бумаги.8.Испаряемость свойственна всем капельным жидкостям, однако интенсивность испарения неодинакова и зависит от условий, в которых они находятся. Испарение – процесс перехода жидкости в газообразное состояние.

Если объем пространства над жидкостью достаточно велик, испарение продолжается до исчезновения жидкости (выкипание чайника). Если объем недостаточно велик, часть молекул жидкости конденсируется и возвращается в жидкое состояние и испарение продолжается до наступления динамического равновесия, когда число испаряющихся и конденсирующихся молекул выравниваются. В окружающем жидкость пространстве устанавливается давление, называемое давлением насыщенных паров Рн.п.Одним из показателей характеризующих испаряемость жидкости, является температура ее кипения при нормальном атмосферном давлении;чем выше температура кипения, тем меньше испаряемость жидкости.

Давление насыщенных паров Рн.п. может быть выражено в функции температуры. Чем больше давление насыщенных паров при данной температуре, тем больше испаряемость жидкости. С увеличением температуры давление Рн.п. увеличивается, однако у разных жидкостей в разной степени (рис. 2.6).

Для сложных жидкостей, представляющих собой многокомпонентные смеси, если бензин или рабочая жидкость, содержат растворенный воздух, давление Рн.п. зависит не только от физико-химических свойств и температуры, но и от соотношения объемов жидкой и паровой фаз. Давление насыщенных паров возрастает с увеличением части объема занятого жидкой фазой. Обычно значения упругости паров сложных жидкостей даются для отношения паровой и жидкой фаз, равного 4: 1.

Максимально возможный в рабочей жидкости вакуум ограничен при данной температуре давлением насыщенных паров

9.Растворимостьгазов в жидкостях характеризуется количеством растворенного газа в единице объема жидкости, различна для разных жидкостей и изменяется с увеличением давления.

Относительный объем газа, растворенного в жидкости до ее полного насыщения, можно считать по закону Генри прямо пропорциональным давлению, т. е.

где Vг— объем растворенного газа, приведенный к нормальным условиям, (Р0, Т0);Vж— объем жидкости;k— коэффициент растворимости;Р—давление жидкости.

Коэффициент k имеет следующие значения при 20 °С: для воды 0,016, для керосина 0,13, для минеральных масел 0,08 — 0,1.

При понижении давления выделяется растворенный в жидкости газ, причем интенсивнее, чем растворятся в ней. Это явление может отрицательно сказываться на работе гидросистем.

10.Смазывающая способность – свойство жидкости обеспечивать наименьшее трение и износ металлических поверхностей деталей под нагрузкой. При пуске механизмов или при разрыве несущего слоя масляной пленки, неровности соприкасающихся деталей контактируют друг с другом, возникают значительные силы трения, если смазывающая способность не будет обеспечена. Оценка смазывающей способности затруднительна, но принимается во внимание при конструировании изделий гидравлики.

“>

Комментировать
0
1 014 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector