No Image

Изменение степени сжатия двс

СОДЕРЖАНИЕ
0
698 просмотров
20 августа 2019

Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Будем разбираться, в чем преимущества такого мотора, и какое у него будущее.

В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней. Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23. Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии. Для малых нагрузок, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально. Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания. Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты. Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором. Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16. Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство. Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с. и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал. Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании – опускании мог гибко варьироваться от 8 до 14. Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм. Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку. С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется. Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14. Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора. Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

Конструкция системы Variable Compression у мотора Infiniti VC-T: а – поршень, b – шатун, с – траверса, d – коленвал, е – электродвигатель, f – промежуточный вал, g – тяга.

За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем. Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть. Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

Каков итог?

Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией. Но японцы надеются доработать конструкцию и запустить ее в серийное производство. Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.

Степень сжатия – важная характеристика двигателя внутреннего сгорания, определяемая отношением объема цилиндра при нахождении поршня в нижней мертвой точке к объему в верхней мертвой точке (объему камеры сгорания). Повышение степени сжатия создает благоприятные условия для воспламенения и сгорания топливно-воздушной смеси и, соответственно, эффективного использования энергии. Вместе с тем, работа двигателя на разных режимах и разных топливах предполагает разную величину степени сжатия. Эти свойства в полной мере используются системой изменения степени сжатия.

Система обеспечивает повышение мощности и крутящего момента двигателя, снижение расхода топлива и вредных выбросов. Основная заслуга системы изменения степени сжатия в способности работы двигателя на разных марках бензина и даже разных топливах без ухудшения характеристик и детонации.

Создание двигателя с переменной степенью сжатия достаточно сложная техническая задача, в решении которой существует несколько подходов, заключающихся в изменении объема камеры сгорания. В настоящее время имеются опытные образцы таких силовых установок.

Пионером в создании двигателя с переменной степенью сжатия является фирма SAAB, представившая в 2000 году пятицилиндровый двигатель внутреннего сгорания, оборудованный системой Variable Compression. В двигателе использована объединенная головка блока цилиндров с гильзами цилиндров. Объединенный блок с одной стороны закреплен на валу, с другой взаимодействует с кривошипно-шатунным механизмом. КШМ обеспечивает смещение объединенной головки от вертикальной оси на 4°, чем достигается изменение степени сжатия в пределе от 8:1 до 14:1.

Необходимое значение степени сжатия поддерживается системой управления двигателем в зависимости от нагрузки (при максимальной нагрузке – минимальная степень сжатия, при минимальной – максимальная степень сжатия). Несмотря на впечатляющие результаты двигателя по мощности и крутящему моменту, силовая установка не пошла в серию, а работы по ней в настоящее время свернуты.

Более современной разработкой (2010 год) является 4-х цилиндровый двигатель от MCE-5 Development объемом 1,5 л. Помимо системы изменения степени сжатия двигатель оснащен другими прогрессивными системами – непосредственного впрыска и изменения фаз газораспределения.

Схема двигателя с переменной степенью сжатия MCE-5
Схема двигателя с переменной степенью сжатия MCE-5

Конструкция двигателя предусматривает независимое изменение величины хода поршня в каждом цилиндре. Зубчатый сектор, выполняющий роль коромысла, с одной стороны взаимодействует с рабочим поршнем, с другой – с поршнем управления. Коромысло рычагом соединено с коленчатым валом двигателя.

Зубчатый сектор перемещается под действием поршня управления, выполняющего роль гидроцилиндра. Объем над поршнем заполнен маслом, объем которого регулируется клапаном. Перемещение сектора обеспечивает изменение положения верхней мертвой точки поршня, чем достигается изменение объема камеры сгорания. Соответственно изменяется степень сжатия в пределе от 7:1 до 20:1.

Двигатель MCE-5 имеет все шансы попасть в серию в ближайшей перспективе.

Еще дальше в своих исследованиях пошел Lotus Cars, представив двухтактный двигатель Omnivore (дословно – всеядное животное). Как заявлено, двигатель способен работать на любом виде жидкого топлива – бензин, дизельное топливо, этанол, спирт и др.

В верхней части камеры сгорания двигателя выполнена шайба, которая перемещается эксцентриковым механизмом и изменяет объем камеры сгорания. С такой конструкцией достигается рекордная степень сжатия 40:1. Тарельчатые клапаны в газораспределительном механизме двигателя Omnivore не используются.

Дальнейшее развитие системы сдерживает низкая топливная экономичность и экологичность двухтактных двигателей, а также их ограниченное применение на автомобилях.

1: соединительный рычаг
2: шестерня синхронизации
3: стойка поршня
4: рабочий поршень
5: выпускной клапан
6: головка блока цилиндров
7: впускной клапан
8: поршень управления
9: блок цилиндров
10: стойка поршня управления
11: зубчатый сектор
12: коленчатый вал

Компания Infiniti объявила, что покажет на Парижском автосалоне уникальный двигатель VC-T с изменяемой степенью сжатия, а буквально несколько недель назад мы рассмотрели некоторые его части в Японии воочию. В двух словах — это революция. И вот почему.

Компания Koenigsegg уже 15 лет ведет разработку инновационного двигателя внутреннего сгорания без распределительного вала и дроссельной заслонки. Недавно мы разбирались, как он работает

Инженерных пророков, которые обещали похоронить поршневой мотор и создать более эффективный двигатель внутреннего сгорания, были сотни, но все они, как еретики, сгорали в костре научно-технической эволюции. Одним из ярких тому примеров — роторно-лопастной мотор ё-мобиля с расходом 3,5 литра топлива на 100 километров, о котором создатели тихо забыли еще до кончины проекта по понятным причинам — ни одного рабочего образца этого двигателя построить так и не удалось.

Главным реальным конкурентом поршневых ДВС обещал стать роторный двигатель Ванкеля, который пошел в серийное производство в шестидесятые.

Основа двигателя Ванкеля — трехгранный ротор, который за счет вспышек топливной смеси вращается внутри камеры сгорания овальной формы. Впуск и выпуск происходят через каналы в стенках камеры.

Такие моторы даже ставились на милицейские Жигули, но сначала они погубили марку NSU, а Mazda — главный идеолог роторов в новейшей истории — взяла с серийными двигателями Ванкеля перерыв.

Новый двигатель разработки Infiniti или, если быть точными, всей корпорации Nissan — Variable Compression Engine (VC-T) — имеет привычные поршни и шатуны, но при этом заметно отличается от любого другого ДВС. И его главное отличие в том, что он может в процессе работы менять степень сжатия.

А что это такое?

Степенью сжатия называют отношение объема камеры сгорания в момент, когда поршень находится в нижней мертвой точке, к объему, когда поршень находится в верхней мертвой точке. Проще говоря, это степень сжатия поршнем воздушно-топливной смеси.

Степень сжатия типичного современного мотора около 10:1. У дизелей этот показатель выше в два раза — в них именно за счет сжатия воспламеняется топливная смесь.

Чем сильнее сжатие, тем сильнее смесь расширяется относительно сжатого объема во время сгорания, и тем сильнее давит на поршень, повышая мощность и общий КПД. В общем, мечта автомобильного инженера.

Проблема в том, что при высокой степени сжатия и высокой нагрузке, бензин начинает не сгорать, а взрываться. Этот эффект называется детонацией и не означает ничего хорошего ни с точки зрения мощности, ни в плане надежности.

Взрыв при детонации не только механически вредит мотору, но и не давит должным образом на поршень.

Инженерам приходится искать компромисс и выбирать степень сжатия, которая исключает детонацию.

Что же делать?

Двигатель VC-T позволяет ступенчато изменять степень сжатия при разных оборотах и нагрузке на мотор, всегда оставаясь на грани максимальной эффективности и не допуская детонации.

Карта изменения степени сжатия мотора в зависимости от оборотов и нагрузки

Например, при малых нагрузках на мотор степень сжатия будет очень высокой — 14:1, чтобы максимально эффективно сжечь топливо. Но как только обороты и нагрузка на мотор возрастают, степень сжатия автоматически уменьшается.

И как это работает?

И просто, и сложно одновременно. Вместо прямого крепления шатуна на коленчатый вал надевается специальная деталь, напоминающую по принципу действия коромысло. Слева к «коромыслу» крепится шатун, который, как и раньше, передает возвратно-поступательные движения.

Двигаясь вверх или вниз, нижний рычаг меняет положение поршня относительно камеры сгорания.

Справа крепится рычаг, управляемый электромотором. Этот дополнительный рычаг может менять положение «коромысла» относительно коленчатого вала, а значит изменять ход поршня относительно камеры сгорания. Речь идет о диапазоне в какие-то пять миллиметров, но это позволяет варьировать степень сжатия в значительных пределах — от 8:1 до 14:1.

И при этом никаких недостатков?

Одной из тех, кто максимально близко подошел к созданию серийного мотора с изменяемой степенью сжатия, была марка Saab. У шведов, правда, относительно друг друга смещались верхняя и нижняя часть блока цилиндров. А в моторе Infiniti/Nissan изменения затронули конструкцию кривошипно-шатунного механизма.

Увы, в инженерном деле за все приходится чем-то платить. Конструкция двигателя VC-T механически сложнее и тяжелее на десять килограммов, чем традиционный ДВС, однако такой мотор все равно дешевле в производстве, чем современные дизели. Поэтому в Nissan и Infiniti надеются, что новая разработка постепенно станет их реальной альтернативой.

Необычный кривошипно-шатунный механизм занимает больше места в высоту, но за счет изменившегося характера возвратно-поступательных движений четырехцилиндровый VC-T получился очень хорошо сбалансированным. Это позволило инженерам убрать из мотора балансировочные валы и нивелировать разницу в размерах. В общем, проблем с упаковкой новинки в подкапотное пространство возникнуть не должно.

Вряд ли все покупатели смогут всмотреться в чертежи и восхититься механической красотой идеи, но точно оценят, если будет выгода в экономичности. Особенно в странах, где налог на автомобиль отталкивается от выбросов CO2.

И какова выгода?

Первой моделью, которая получит VC-T, станет кроссовер Infiniti QX50 следующего поколения. Стало быть, серийное производство агрегата может начаться уже в семнадцатом году.

Это будет двухлитровый турбированный агрегат мощностью около 270 лошадиных сил и с крутящим моментом в 390 Нм. Причем работать он будет в паре с вариатором.

Комментировать
0
698 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector