No Image

Принцип работы форсунки инжекторного двигателя

СОДЕРЖАНИЕ
0
1 004 просмотров
20 августа 2019

Виды системы

Свое название инжекторная система впрыска топлива получила от устройства, которое отвечает за распыление бензина – инжектора (от англ. Injection – впрыск, injector – форсунка). Система питания такого типа устанавливалась на самолеты еще в 20-х годах прошлого столетия. Что примечательно, уже тогда это был непосредственный впрыск топлива в цилиндры двигателя. Основное внимание уделим развитию вариациям системы Motronic, в которой за подачу топлива и регулировку угла зажигания отвечает блок управления двигателем (далее ЭБУ или ECU).

Single Point fuel Injection

Одноточечный тип впрыска, более известный как моновпрыск, является переходной технологией, которая позволила многим автопроизводителям задешево перейти от карбюраторной системы питания к инжектору.

Иными словами, вместо карбюратора над впускным коллектором начал устанавливаться агрегат центрального впрыска топлива. Система имела ряд преимуществ, поскольку ЭБУ позволял более точно дозировать бензин.

Принцип работы инжектора построен на следующих элементах:

  1. – топливный бак с расположенным в нем топливным насосом;
  2. – фильтрующий элемент для очистки топлива;
  3. – центральный агрегат впрыска. 3а – датчик положения дроссельной заслонки (ДПДЗ); 3б – регулятор, отвечающий за давление топлива; 3с – форсунка инжектора; 3д – датчик температуры воздуха, поступающего во впускной коллектор; 3е – регулятор положения дроссельной заслонки (в простейших вариантах конструкции привод заслонки был связан с педалью акселератора тросовым приводом);
  4. – датчик температуры охлаждающей жидкости (ДТОЖ);
  5. – лямбда-зонд (кислородный датчик);
  6. – электронный блок управления двигателем.

Принцип работы

На схеме не показан один элемент, без которого работа механизма была бы невозможной, – датчик положения коленчатого вала. Именно ДПКВ позволяет ЭБУ рассчитывать количество воздуха, поступающего в двигатель. Напомним, что количество подаваемого топлива всецело зависит от массы воздуха, поступающего в цилиндры, иначе регулировать состав топливовоздушной смеси (ТПВС) для нормальной работы бензинового двигателя невозможно. На этапе создания двигателя конструкторами рассчитывается, сколько воздуха проходит при определенной нагрузке, то есть степени открытия дросселя, и на определенных оборотах двигателя. Данные заносятся в топливную карту двигателя, которая будет записана в ЭБУ. Впоследствии при работе двигателя блок управления фиксирует обороты с помощью ДПКВ, нагрузка определяется потенциометром дроссельной заслонки, что позволяет взять из топливной карты значение, соответствующее необходимому количеству топлива. Но система идеально может работать только в лабораторных условиях, поскольку на практике атмосферное давление зависит не только от положения над уровнем моря, но и от температуры, воздушный фильтр со временем забивается, пропуская через себя меньше воздуха, засоряется и сам дроссельный узел. Для коррекции используется датчик температуры воздуха, но роль его невелика. По-настоящему на состав смеси влияет лямбда-зонд, измеряющий количество кислорода в выхлопных газах. Если кислорода слишком много, ЭБУ понимает, что смесь необходимо обогатить, и наоборот.

Характеристика

Главное преимущество одноточечного впрыска – дешевизна реализации. Недостатки:

  • неравномерное наполнение цилиндров, что обусловлено месторасположением форсунки;
  • «мокрый» коллектор. При открытии форсунки бензин преодолевает долгий путь до камеры сгорания. Когда коллектор холодный, топливо не испаряется, а оседает на стенках, вследствие чего смесь необходимо сильно богатить;
  • лямбда-зонд хоть и позволяет корректировать ТПВС, но способ измерения массы воздуха в целом неэффективен.

Multi-Point fuel injection

Многоточечный впрыск стал значительным шагом вперед, по сравнению с одноточечным впрыском, поскольку позволил автомобилям вкладываться в нормы токсичности ЕВРО-3.

Одноточечный впрыск, ввиду неизлечимых болезней, обусловленных особенностями конструкции, мог выполнить только требования ЕВРО-2.

История эволюции систем впрыска автомобилей крайне интересна, но не она является главной темой этой статьи. Именно поэтому уделять внимание тонкостям работы таких систем управления двигателем с распределенным впрыском, как D-Jetronic, KE-Jetronic, K-Jetronic и L-Jetronic мы не будем. Устанавливать на авто перечисленные вариации перестали еще в начале 90-х, а поэтому встретить автомобиль с «живой» системой распределительного впрыска такого типа крайне сложно.

Главное отличие полноценного инжектора от моновпрыска – наличие 4-х форсунок, расположенных вблизи впускных клапанов. Компоненты инжекторного двигателя:

  1. – топливный насос, который в подавляющем большинстве случаев расположен в баке;
  2. – фильтр грубой очистки топлива;
  3. – регулятор давления топлива, от которого к баку идет магистраль обратки для слива лишнего топлива. В некоторых авто обратная магистраль отсутствует как таковая, а регулятор топлива находится рядом с насосом в баке;
  4. – форсунка. На рисунке сверху показано, как все форсунки соединены топливной рампой;
  5. – расходомер воздуха;
  6. – датчик температуры охлаждающей жидкости;
  7. – регулятор холостого хода (РХХ);
  8. – потенциометр, фиксирующий фактическое положение дроссельной заслонки (ДПДЗ);
  9. – датчик частоты вращения коленчатого вала (ДПКВ);
  10. – кислородный датчик;
  11. – ЭБУ;
  12. – распределитель зажигания.

Расчет массы воздуха

Помимо форсунок, особенностью системы является способ расчета массы воздуха. Существует всего 5 способов измерения количества воздуха, проходящего через дроссельную заслонку:

    • обороты/нагрузка. Применяется на одноточечной системе впрыска и в качестве резервного варианта для распределительного впрыска, если расходомер воздуха выходит из строя;
    • расходомер флюгерного типа. Применялся на системах управления двигателем Jetronic;
    • ДМРВ – датчик массового расхода воздуха. Принцип работы основывает на поддержании электрическим током постоянной температуры нагревательного элемента. Проходящий через ДМРВ воздух охлаждает элемент, что требует увеличения тока. При помощи преобразователя величина тока нагрева элемента преобразовывается в выходное напряжение. Между напряжением и массой поступившего воздуха существует зависимость, которая и позволяет ЭБУ рассчитать количество необходимого для подачи топлива;
    • MAP-сенсор – датчик давления во впускном коллекторе. ЭБУ, имея информацию о величине абсолютного давления во впускном коллекторе и дополнительно используя показания датчика температуры воздуха, рассчитывает цикловую подачу топлива;
    • датчик объема воздуха. Измеряется именно объем, который впоследствии пересчитывается в массу; на данный момент такой способ расчета воздуха не используется.

    Характеристика

    Преимущества распределительного впрыска на клапаны:

    • равномерное наполнение цилиндров;
    • использование ДМРВ или MAP-сенсора позволяет точно рассчитывать расход воздуха, что дает больше возможностей для регулировки ТПВС на всех режимах работы мотора.

    Именно поэтому автомобили с полноценным инжектором всегда мощнее и экономичнее авто с одноточечным впрыском.

    Direct injection

    Непосредственный впрыск, являющийся разновидностью системы распределительного впрыска, – последнее слово в системах питания бензиновых двигателей. Главной особенностью прямого впрыска является подача топлива непосредственно в камеру сгорания.

    GDI, FSI, D4 – аббревиатуры, использующиеся Mitsubishi, Volkswagen и Toyota, соответственно, для обозначения двигателей с непосредственным впрыском. Система питания таких ДВС больше походит на дизельные моторы, нежели на привычные всем ДВС цикла Отто. Устройство:

    Чем обусловлена эффективность

    Дороговизна и сложность производства, являющиеся главными недостатками прямого впрыска, с лихвой окупаются чрезвычайной экономичностью и мощностными характеристиками. Достигается это за счет того, что мотор может работать на 3-х основных вариантах топливной смеси (в качестве примера выбрана система GDI):

    • сверхбердная смесь. Топливо впрыскивается в конце такта сжатия и сгорает в непосредственной близости к свече зажигания, в то время как вокруг зоны сгорания в камере сгорания находится преимущественно чистый воздух либо смесь воздуха с выхлопными газами, за подачу которых отвечает EGR;
    • стехиометрическая. Топливо подается на такте впуска, хорошо перешивается с воздухом, образуя смесь близкую к идеальному пропорциональному соотношению (14,7/1) во всей камере сгорания;
    • мощностной режим, при котором ТПВС приготавливается в два этапа. Небольшое количество топлива подается на такте впуска, но основная порция впрыскивается в конце такта сжатия.

    За счет подачи топлива в жидкой фазе непосредственно в камеру сгорания двигатели с прямым впрыском менее склонны к детонации, что позволяет повысить степень сжатия и увеличить КПД двигателя.


    Инжектор — это революция в автомобилестроении. Сам по себе механизм сложный и для максимальной производительности его работа должна быть хорошо отлажена. Инжекторная система подачи топлива в двигатель работает по средствам ЭБУ (электронный блок управления), который высчитывает параметры топливной смеси перед ее подачей в цилиндры и управляет подачей напряжения на катушку зажигания для создания искры. Инжекторные агрегаты сместили с производства карбюраторные моторы.

    В карбюраторных устройствах задачу подачи исполняет механический эмулятор, что не совсем удобно, потому что его система не способна сформировывать оптимальную смесь при низких температурах, оборотах и старте двигателя. Использование компьютерного блока дало возможность максимально точно осуществлять расчет параметров, и беспрепятственно на любых оборотах и температуре подавать топливо, соблюдая при этом экологические стандарты. Минус наличия ЭБУ в том, что если возникнут проблемы, например, слет прошивки, то мотор начнет работать либо с перебоями, либо вовсе откажется функционировать.

    Вообще, инжекторный двигатель работает по тому же принципу, что и дизельный. Отличие только в устройстве зажигания, которое придает ему мощности на 10% больше чем у карбюраторного мотора, что не так уж и много. О плюсах и минусах системы пусть спорят профессионалы, но знать устройство инжектора или хотя бы иметь представление о его строении обязан каждый водитель, планирующий ремонтировать двигатель собственноручно. Также со знаниями инжекторного узла, вас не смогут обмануть на СТО недобросовестные работники.

    История возникновения инжекторной системы впрыска

    Инжектор по сути, форсунка, выступающая распрыскивателем горючего в двигателях. Изготовлен первый инжекторный мотор был в 1916 году российскими конструкторами Стечкиным и Микулиным. Однако воплощена система впрыска топлива в автомобилестроении, была только в 1951 году западногерманской компанией Bosch, которая наделила двухконтактный мотор незамысловатой механической конструкцией впрыска. Примерил на себя новинку микролитражный купе «700 Sport» компании Goliath из Бремена.

    По прошествии трех лет задумку подхватил четырехконтактный мотор Mercedes-Benz 300 SL — легендарное купе «Крыло Чайки». Но, так как жестких экологических требований не было, то идея инжекторного впрыска была не востребована, а состав элементов сгорания двигателей не вызывал интереса. Главной задачей на тот момент было повысить мощность, поэтому состав смеси составлялся с расчетом избыточного содержания бензина. Таким образом, в продуктах сгорания, вообще, не было кислорода, а оставшееся несгоревшее горючие образовывало вредоносные газы посредством неполного сгорания.

    Установлен инжекторный двигатель

    Стремясь увеличить мощность, разработчики ставили на карбюраторы ускорительные насосы, заливавшие горючие в коллектор с каждым нажатием на педаль акселератора. Только в конце 60 х-годов 20 века проблема загрязнения окружающей среды промышленными отходами стала ребром. Транспортные средства заняли лидирующую строчку среди загрязнителей. Было решено для нормальной жизнедеятельности кардинально перестроить конструкцию топливного аппарата. Тут-то и вспомнили за инжекторную систему, которая гораздо эффективнее обычных карбюраторов.
    Так, в конце 70-го произошло массовое вытеснение карбюраторов инжекторными аналогами, превосходящими во много раз эксплуатационными характеристиками. Испытательной моделью выступил седан Rambler Rebel («Бунтарь») 1957 модельного года. После инжектор был включен в серийное производство всеми мировыми автопроизводителями.

    Как работает инжектор?

    Обычно он имеет в своей конструкции следующие составляющие:

    1. ЭБУ.
    2. Форсунки.
    3. Датчики.
    4. Бензонасос.
    5. Распределитель.
    6. Регуляторы давления.

    Если описывать коротко принцип работы инжектора заключается в следующем:

    • на датчики поступают сигналы о работе системы;
    • после блок сопоставляет параметры и осуществляет управление системой;
    • затем идет подача электрического разряда на форсунки, под его натиском они открываются, впуская смесь из топливной магистрали во впускной коллектор.

    Схема инжекторного мотора

    Электронный блок управления

    Его задача беспрерывно анализировать поступающие параметры от датчиков и давать команды системами. Компьютер учитывает факторы внешней среды и особенности различных режимов работы двигателя, при которых происходит эксплуатация. В случае выявления несовпадений, центр подает команды исполнительным элементам для коррекции. ЭБУ также имеет систему диагностики. Когда случается сбой, она распознает возникшие неполадки, оповещая водителя индикатором «CHECK ENGINE». Вся информация о диагностических кодах и ошибках хранится в центральном блоке.

    Различают 3 вида памяти:

    1. Однократноепрограммируемое постоянное запоминающее устройство (ППЗУ). Хранит общую установку с последовательностью действий для управления системой. Располагается запоминающий чип в панели на плате блока, он легко сниматься и заменятся на новый. Информация здесь не меняется и при сбоях сети не стирается.
    2. Оперативноезапоминающее устройство (ОЗУ). Выступает как временное хранилище «блокнот», где рассчитываются параметры и куда компьютер может вносить изменения. Микросхема располагается на печатной плате блока. Для ее работы постоянно нужна электрическая сеть, если питание не поступает, то все данные находящиеся во временном хранилище стираются.
    3. Электрически программируемоезапоминающее устройство (ЭПЗУ). Временное хранилище данных и кодов-паролей противоугонной системы транспортного средства. Память не зависит от сети. Хранящиеся в ней коды нужны для сравнения с кодами иммобилайзера, если совпадения не произошло, то мотор не заведется.

    Первый тойотовский инжекторный двигатель M-E 1972 года

    Расположение, классификация и маркировка форсунок

    После разбора вопроса как работает инжектор, просмотрим поверхностно всю инжекторную систему. Инжекторная система, производит впрыск горючего во впускной коллектор и цилиндр мотора посредством форсунки, которая способна за секунду открываться и закрываться много раз. Система делится на два типа. Классификация зависит от расположения крепления форсунки, устройства ее работы и количества:

    1. Моновпрыск, иначе как центральный впрыск топлива Throttle body injection (TBI), работает посредством одной форсунки, подающей горючие в цилиндры мотора. Подача струи не синхронизирована ко времени открытия впускного клапана мотора. Одноточечный впрыск простой и мало содержит управляющей электроникой. Вся система TBI находится внутри впускного коллектора. Технология сегодня не популярна и почти не задействуется при производстве авто, так как не удовлетворяет нынешним требованиям.
    2. Распределительный впрыск топлива Multiport Fuel Injection (MFI) на сегодня востребован, потому что гораздо совершенен. Его суть в том, что каждая форсунка подает горючее индивидуально к каждому цилиндру. Крепится конструкция снаружи впускного коллектора. Сигналы синхронизированы с последовательностью зажигания двигателя. Этот тип впрыска сложнее по конструкции, однако, мощнее НА 7–10% и экономичнее предшественников.

    Сравнение карбюратора и инжектора

    Есть несколько классификаций распределительного впрыска:

    • одновременный – работа всех форсунок синхронна, то есть впрыск идет сразу во все цилиндры;
    • попарно-параллельный – когда одна открывается перед впуском, а другая перед выпуском;
    • фазированный или двухстадийный режим – инжектор открывается только перед впуском. Дает возможность на малых оборотах, при резком нажатии на педаль акселератора увеличить момент двигателя. Впрыск проходит в два этапа.
    • непосредственный (впрыск на такте впуска) GDI (Gasoline Direct Injection) – струя идет сразу в камеру сгорания. Для моторов с таким впрыском требуется и более качественное топливо, где незначительное количество серы и других химических элементов. Мотор GDI способен исправно служить в режиме сгорания сверхобедненной топливовоздушной смеси. Меньшее содержание воздуха делает состав менее воспламеняемым. Горючее внутри цилиндра прибывает как облако, пребывающее рядом со свечей зажигания. Смесь схожа с стехиометрическим составом, который легко воспламеняется.

    Инжекторные форсунки имеют разный способ подачи струи:

      Электрогидравлический. Работает посредством разницы давления дизеля на поршень и форсунку. Когда клапан обесточен, иглу форсунки жидкостью придавливает к седлу. А если клапан открывается, то открывается и дроссель, после чего осуществляется заполнение дизелем топливной магистрали. Во время этого давление на поршень снижается, а на игле ничего не происходит, что ее и поднимает в момент впрыска.

    Нейтрализатор/катализатор

    Для сокращения выброса окисей углерода и азота, в инжектор был добавлен каталитический нейтрализатор. Он преобразует выделенные из газов углеводороды. Применяется на инжекторах лишь с обратной связью. Перед катализатором имеется датчик содержания кислорода в выхлопных газах, по-другому его называют как лямбда-зонд. Контроллер, получая информацию от датчика, вытягивает подачу топливной смеси до нормы. В нейтрализаторе есть керамические составляющие с микроканалами, где содержатся катализаторы:

    • два окислительных из платины и палладия;
    • один восстановительный из родия.

    Инжекторная топливная система

    Нельзя чтобы мотор с нейтрализатором работал на этилированном бензине. Это выведет из строя не только нейтрализаторы, но и датчики концентрации кислорода.

    Так как простых каталитических нейтрализаторов недостаточно, то используется рециркуляция отработавших газов. Она существенно убирает образовавшиеся оксиды азота. Помимо этого, для этих целей устанавливается дополнительный NO-катализатор, так как система EGR не способна создать полное удаление NOx. Есть два типа катализаторов для понижения выбросов NOx:

    1. Селективные. Не привередливы к качеству топлива.
    2. Накопительного типа. Гораздо эффективнее, но очень чувствительны к высокосернистым горючим, что нельзя сказать о селективных. Поэтому они обширно применяются на авто для стран с малым количеством серы в топливе.

    Основные датчики

    1. Датчик положения коленчатого вала (Датчик Холла). Дает блоку знать, расположение поршней в цилиндрах. Суть работы в том, что находящееся на валу мотора зубчатое колесо двигается около магнита. Его зубья искажают магнитное поле, создавая импульсы в катушке. ЭБУ считывает эти импульсы и определяет положение коленвала. Если этот датчик вышел из строя, то до СТО доехать на своей машине не получится.
    2. Датчик расхода воздуха (ДРВ). Существует два вида таких датчиков, один измеряет массу другой объем вбираемого воздуха. ДМРВ производит замер и посылает в ЭБУ. В потоке есть нагревательный элемент, температура которого автоматически держится на нужном показателе. Чем тяжелее воздух, тем больший ток должен проходить через него, для поддержания оптимальной температуры. Потому ЭБУ по силе тока определяет массу всасываемого воздуха. Что касается датчика объёма (ДОРВ), то он устроен так. В потоке, где проходит забор воздуха, установлена перегородка, открывающаяся под натиском воздуха. ЭБУ определяет положение заслонки при помощи потенциометра. Во время неполадки параметры датчика не учитываются, а расчет происходит по показателям аварийной таблицы.

    Система подачи топлива

    Узел включает в себя:

    • топливный насос;
    • топливный фильтр;
    • топливопроводы;
    • рампу;
    • форсунки;
    • регулятор давления топлива.

    Система подачи топлива

    Рассмотрим, как работает бензонасос на инжекторе. Насос находится в топливном баке и подает бензин на рампу под давлением 3,3–3,5 Мпа, что обеспечивает качественный распыл горючего по цилиндрам. Если обороты мотора увеличиваются, заметно возрастает и аппетит, то есть для сохранения давления, в рампу нужно поставлять больше бензина. Поэтому бензонасос по оповещению контроллера начинает ускорять вращения. Вовремя, прохода бензина к топливной рампе, лишнее убирается регулятором давления и спускается назад в бензобак, поддерживая тем самым постоянное давление в рампе.

    Топливный фильтр находится под капотом кузова за топливным баком, он вмонтирован между электробензонасосом и топливной рампой в подающую магистраль. Его конструкция не разбирается, она являет собой металлический корпус с бумажной фильтрующей установкой.
    Есть прямой и обратный топливопровод. Первый нужен для топлива, идущего из модуля насоса в рампу. Второй возвращает излишки горючего после регулятора назад в бензобак. Рампа – полая планка, соединённая с форсунками, регулятором давления и штуцером контроля давления в системе. Установленный на ней регулятор контролирует давление внутри ее и во впускной трубе. Его конструкция содержит мембранный клапан с диафрагмой и пружину, поджатую к седлу.