No Image

Принцип работы регулятора напряжения генератора автомобиля

СОДЕРЖАНИЕ
0
758 просмотров
20 августа 2019
Home Автоэлектроника Регуляторы напряжения автомобильных генераторов


Рис. 1. Способы управления током возбуждения: Г – генератор с параллельным возбуждением; Wв – обмотка возбуждения; Rд – дополнительное сопротивление; R – балластное сопротивление; К – коммутатор тока (регулирующий орган) в цепи возбуждения; а, б, в,г, д указаны в тексте.

Современный автомобильный двигатель внутреннего сгорания (ДВС) работает в широком интервале изменения оборотов (900. 6500 об/мин). Соответственно изменяется и частота вращения ротора автомобильного генератора, а значит и его выходное напряжение.

Зависимость выходного напряжения генератора от оборотов двигателя внутреннего сгорания недопустима, так как напряжение в бортовой сети автомобиля должно быть постоянным и не только при изменении оборотов двигателя, но и при изменении тока нагрузки. Функцию автоматического регулирования напряжения в автомобильном генераторе выполняет специальное устройство — регулятор напряжения автомобильных генераторов. Данный материал посвящен рассмотрению регуляторов напряжения современных автомобильных генераторов переменного тока.

Регулирование напряжения в генераторах с электромагнитным возбуждением

Способы регулирования. Если главное магнитное поле генератора наводится электромагнитным возбуждением, то электродвижущая сила Eг генератора может быть функцией двух переменных: частоты n вращения ротора и тока Iв в обмотке возбуждения — Eг = f(n, Iв).

Именно такой тип возбуждения имеет место во всех современных автомобильных генераторах переменного тока, которые работают с параллельной обмоткой возбуждения.

При работе генератора без нагрузки его напряжение Uг равно его электродвижущей силе ЭДС Eг:
Uг = Eг = СФn (1).

Напряжете Uг генератора под током Iн нагрузки меньше ЭДС Eг на величину падения напряжения на внутреннем сопротивлении rг генератора, т.е. можно записать, что
Eг = Uг + Iнrг = Uг(1 + β) (2).

Величина β = Iнrг/Uг называется коэффициентом нагрузки.

Из сравнения формул 1 и 2 следует, что напряжение генератора
Uг = nСФ/(1 + β), (3)
где С — постоянный конструктивный коэффициент.

Уравнение (3) показывает, что как при разных частотах (n) вращения ротора генератора (n = Var), так и при изменяющейся нагрузке (β = Var), неизменность напряжения Uг генератора может быть получена только соответствующим изменением магнитного потока Ф.

Магнитный поток Ф в генераторе с электромагнитным возбуждением формируется магнитодвижущей силой Fв = W Iв обмотки Wв возбуждения (W — число витков обмотки Wв) и может легко управляться с помощью тока Iв в обмотке возбуждения, т.е. Ф = f (Iв). Тогда Uг = f[n, β, f(Iв)] 1 что позволяет удерживать напряжение Uг генератора в заданных пределах регулирования при любых изменениях его оборотов и нагрузки соответствующим выбором функции f(Iв) регулирования.

Автоматическая функция f(Iв) регулирования в регуляторах напряжения сводится к уменьшению максимального значения тока Iв в обмотке возбуждения, которое имеет место при Iв = Uг/Rw (Rw — активное сопротивление обмотки возбуждения) и может уменьшаться несколькими способами (рис. 1): подключением к обмотке Wв параллельно (а) или последовательно (б) дополнительного сопротивления Rд: закорачиванием обмотки возбуждения (в); разрывом токовой цепи возбуждения (г). Ток через обмотку возбуждения можно и увеличивать, закорачивая последовательное дополнительное сопротивление (б).

Все эти способы изменяют ток возбуждения скачкообразно, т.е. имеет место прерывистое (дискретное) регулирование тока. В принципе возможно и аналоговое регулирование, при котором величина последовательного дополнительного сопротивления в цепи возбуждения изменяется плавно (д).

Но во всех случаях напряжение Uг генератора удерживается в заданных пределах регулирования соответствующей автоматической корректировкой величины тока возбуждения.

Дискретно – импульсное регулирование

В современных автомобильных генераторах магнитодвижущую силу Fв обмотки возбуждения, а значит и магнитный поток Ф, изменяют периодическим прерыванием или скачкообразным уменьшением тока Iв возбуждения с управляемой частотой прерывания, т.е. применяют дискретно-импульсное регулирование рабочего напряжения Uг генератора (ранее применялось аналоговое регулирование, например, в угольных регуляторах напряжения).

Суть дискретно-импульсного регулирования станет понятной из рассмотрения принципа действия генераторной установки, состоящей из простейшего контактно-вибрационного регулятора напряжения, и генератора переменного тока (ГПТ).


Рис. 2. Функциональная (а) и электрическая (б) схемы генераторной установки с вибрационным регулятором напряжения.

Функциональная схема генераторной установки, работающей совместно с бортовой аккумуляторной батареей (АКБ), показана на рис. 2а, а электрическая схема — на рис. 26.

В состав генератора входят: фазные обмотки Wф на статоре СТ, вращающийся ротор R, силовой выпрямитель ВП на полупроводниковых диодах VD, обмотка возбуждения Wв (с активным сопротивлением Rw). Механическую энергию вращения Aм = f(n) ротор генератора получает от ДВС. Вибрационный регулятор напряжения РН выполнен на электромагнитном реле и включает в себя коммутирующий элемент КЭ и измерительный элемент ИЭ.

Коммутирующий элемент КЭ — это вибрационный электрический контакт К, замыкающий или размыкающий дополнительное сопротивление Rд, которое включено с обмоткой возбуждения Wв генератора последовательно. При срабатывании коммутирующего элемента (размыкание контакта К) на его выходе формируется сигнал τRд (рис. 2а).

Измерительный элемент (ИЭ, на рис. 2а) — это та часть электромагнитного реле, которая реализует три функции:

  1. функцию сравнения (СУ) механической упругой силы Fn возвратной пружины П с магнитодвижущей силой Fs = WsIs релейной обмотки S (Ws — число витков обмотки S, Is — ток в релейной обмотке), при этом результатом сравнения является сформированный в зазоре с период Т (Т = tр + tз) колебаний якоря N;
  2. функцию чувствительного элемента (ЧЭ) в цепи обратной связи (ЦОС) регулятора напряжения, чувствительным элементом в вибрационных регуляторах является обмотка S электромагнитного реле, подключенная непосредственно к напряжению Uг генератора и к аккумуляторной батарее (к последней через ключ зажигания ВЗ);
  3. функцию задающего устройства (ЗУ), которое реализуется с помощью возвратной пружины П с силой упругости Fп и опорной силой Fо.

Работа регулятора напряжения с электромагнитным реле наглядно может быть пояснена с помощью скоростных характеристик генератора (рис. 3 и 4).


Рис. 3. Изменение Uг, Iв, Rб во времени t: а — зависимость текущего значения выходного напряжения генератора от времени t — Uг = f (t); б — зависимость текущего значения в обмотке возбуждения от времени — Iв = f (t); в — зависимость среднеарифметического значения сопротивления в цепи возбуждения от времени t — Rб = f(t); I — время, отвечающее частоте (n) вращения ротора генератора.

Пока напряжение Uг генератора ниже напряжения Uб аккумуляторной батареи (Uг Uб) магнитодвижущая сила Fs релейной обмотки становится больше силы Fп возвратной пружины П, т.е. Fs= Is Ws > Fп. Электромагнитное реле срабатывает и контакт К размыкается, при этом в цепь обмотки возбуждения включается дополнительное сопротивление.

Еще до размыкания контакта К ток Iв в обмотке возбуждения достигает своего максимального значения Iв max = UгRw > Iвб, от которого, сразу после размыкания контакта К, начинает падать, стремясь к своему минимальному значению Iв min = Uг/(Rw + Rд). Вслед за падением тока возбуждения напряжение генератора начинает соответственно уменьшаться (Uг = f(Iв), что приводит к падению тока Is = Uг/Rs в релейной обмотке S и контакт К вновь размыкается усилием возвратной пружиной П (Fп > Fs). К моменту размыкания контакта К напряжение генератора Uг становится равным своему минимальному значению Umin, но остается несколько больше напряжения аккумуляторной батареи (Uгmin > Uб).

Начиная с момента размыкания контакта К (n = nmin, рис. 3), даже при неизменной частоте n вращения ротора генератора, якорь N электромагнитного реле входит в режим механических автоколебаний и контакт К, вибрируя, начинает периодически, с определенной частотой коммутации fк = I/Т = I/(tр + tз) то замыкать, то размыкать дополнительное сопротивление Rд в цепи возбуждения генератора (зеленая линия на участке n = nср = const, рис. 3). При этом сопротивление Rв в токовой цепи возбуждения изменяется скачкообразно от значения Rw до величины Rw+Rд.

Так как при работе регулятора напряжения контакт К вибрирует с достаточно высокой частотой fк коммутации, то Rв = Rw + τр где величина τр — это относительное время разомкнутого состояния контакта К, которое определяется по формуле τр = tр/(tз + tр), I/(tз + tр) = fк — частота коммутации. Теперь среднее, установившееся для данной частоты fк коммутации, значение тока возбуждения может быть найдено из выражения:

Iв ср = Uг ср/Rв = Uг ср/(RwрRд) = Uг ср/(Rw + Rдtр/fк),
где Rв — среднеарифметическое (эффективное) значение пульсирующего сопротивления в цепи возбуждения, которое при увеличении относительного времени τр разомкнутого состояния контакта К также увеличивается (зеленая линия на рис. 4).


Рис. 4. Скоростные характеристики генератора.

Процессы при коммутациях с током возбуждения

Рассмотрим более подробно, что происходит при коммутациях с током возбуждения. Когда контакт К длительно замкнут, по обмотке Wв возбуждения протекает максимальный ток возбуждения Iв = Uг/Rw.

Однако обмотка возбуждения Wв генератора представляет собой электропроводную катушку с большой индуктивностью и с массивным ферромагнитным сердечником. Как следствие, ток через обмотку возбуждения после замыкания контакта К нарастает с замедлением. Это происходит потому, что скорости нарастания тока препятствует гистерезис в сердечнике и противодействующая нарастающему току — ЭДС самоиндукции катушки.

При размыкании контакта К ток возбуждения стремится к минимальной величине, значение которой при длительно разомкнутом контакте определяется как Iв = Uг/(Rw + Rд). Теперь ЭДС самоиндукции совпадает по направлению с убывающим током и несколько продлевает процесс его убывания.

Из сказанного следует, что ток в обмотке возбуждения не может изменяться мгновенно (скачкообразно, как дополнительное сопротивление Rд) ни при замыкании, ни при размыкании цепи возбуждения. Более того, при высокой частоте вибрации контакта К ток возбуждения может не достигать своей максимальной или минимальной величины, приближаясь к своему среднему значению (рис. 4), так как величина tр = τр/fк увеличивается с увеличением частоты fк коммутации, а абсолютное время tз замкнутого состояния контакта К уменьшается.

Из совместного рассмотрения диаграмм, показанных на рис. 3 и рис. 4, вытекает, что среднее значение тока возбуждения (красная линия б на рис. 3 и рис. 4) при повышении оборотов n уменьшается, так как при этом увеличивается среднеарифметическая величина (зеленая линия на рис. 3 и рис. 4) суммарного, пульсирующего во времени, сопротивления Rв цепи возбуждения (закон Ома). При этом среднее значение напряжения генератора (Uср на рис. 3 и рис. 4) остается неизменным, а выходное напряжение Uг генератора пульсирует в интервале от Umax до Umin.

Если же увеличивается нагрузка генератора, то регулируемое напряжение Uг первоначально падает, при этом регулятор напряжения увеличивает ток в обмотке возбуждения настолько, что напряжение генератора обратно повышается до первоначального значения.

Таким образом, при изменении тока нагрузки генератора (β = Var) процессы регулирования в регуляторе напряжения протекают так же, как и при изменении частоты вращения ротора.

Пульсации регулируемого напряжения. При постоянной частоте n вращения ротора генератора и при постоянной его нагрузке рабочие пульсации тока возбуждения (ΔIв на рис. 46) наводят соответствующие (по времени) пульсации регулируемого напряжения генератора.

Амплитуда пульсаций ΔUг — 0,5(Umax — Umin)* регулятора напряжения Uг от амплитуды тоновых пульсаций ΔIв в обмотке возбуждения не зависит, так как определяется заданным с помощью измерительного элемента регулятора интервалом регулирования. Поэтому пульсации напряжения Uг на всех частотах вращения ротора генератора практически одинаковы. Однако скорость нарастания и спада напряжения Uг в интервале регулирования определяется скоростью нарастания и спада тока возбуждения и, в конечном счете, частотой вращения (n) ротора генератора.

* Следует заметить, что пульсации 2ΔUг являются неизбежным и вредным побочным проявлением работы регулятора напряжения. В современных генераторах они замыкаются на массу шунтирующим конденсатором Сш, который устанавливается между плюсовой клеммой генератора и корпусом (обычно Сш = 2,2 мкФ)

Когда нагрузка генератора и частота вращения его ротора не изменяются, частота вибрации контакта К также неизменна (fк = I/(tз + tр) = const). При этом напряжение Uг генератора пульсирует с амплитудой ΔUр = 0,5(Umax — Umin) около своего среднего значения Uср.

При изменении частоты вращения ротора, например, в сторону увеличения или при уменьшении нагрузки генератора, время tз замкнутого состояния становится меньше времени tр разомкнутого состояния (tз 14,5 В; транзистор V2 управляет выходным каскадом; V3 — запирающий диод на входе выходного каскада; V4, V5 — мощные транзисторы выходного каскада (составной транзистор), включенные последовательно с обмоткой возбуждения (коммутирующий элемент КЭ для тока Iв); V6 шунтирующий диод для ограничения ЭДС самоиндукции обмотки возбуждения; R4, C1, R3 цепочка обратной связи, ускоряющая процесс отсечки тока Iв возбуждения.

Еще более совершенным регулятором напряжения является электронный регулятор в интегральном исполнении. Это такое исполнение, при котором все его компоненты, кроме мощного выходного каскада (обычно это составной транзистор), реализованы с помощью тонкопленочной микроэлектронной технологии. Эти регуляторы настолько миниатюрны, что практически не занимают никакого объема и могут устанавливаться непосредственно на корпусе генератора в щеткодержателе.

Примером конструктивного исполнения ИРН может служить регулятор фирмы BOSCH-EL14V4C, который устанавливается на генераторах переменного тока мощностью до 1 кВт (рис. 6).

В заключение следует отметить, что интегральные регуляторы напряжения, в принципе, ремонту не подлежат. Кроме некоторых отдельных случаев, которые подробно рассматривали здесь
Автомобильные генераторы фирмы BOSCH
и здесь
Автомобильный генератор Bosch K114v23/55a – конструкция и принципиальная схема.

Для питания бортовой сети транспортного средства предусмотрено два источника тока. И водителю очень важно разбираться в принципах работы автомобильного генератора, который наряду с аккумуляторной батареей, предназначен для обеспечения энергией электрооборудования машины.

К надёжности и стабильности устройств такого рода предъявляются жесткие требования.

В Российской Федерации производимое и используемое электрооборудование должно соответствовать ГОСТ Р 52230-2004. Документ устанавливает общие технические условия, которые распространяются и на стартерные аккумуляторы автомобилей. Упомянутый национальный стандарт полностью соответствует международным нормативам, что позволяет использовать на отечественных машинах компоненты иностранного производства.

На заре автомобилестроения и вплоть до 60-х годов прошлого века в бортовых сетях использовались генераторы постоянного тока — капризные и маломощные. С появлением полупроводниковых (селеновых и кремниевых) выпрямителей на машины стали ставить агрегаты переменного тока. Они втрое меньше по массе и при той же нагрузке обеспечивают более высокую стабильность выходного тока.

Для чего в автомобиле нужен генератор?

Генератор используется для поддержания в бортовой сети определенных напряжения и тока. Основное назначение генератора автомобиля состоит в обеспечении устойчивого питания электрооборудования при работающем двигателе – в частности, для:

  • Заряда аккумулятора.
  • Питания всех потребителей электрического тока в нормальных условиях.
  • Питания потребителей совместно с АКБ при экстремальной эксплуатации.

Применение автомобильного генератора позволяет восстанавливать заряд аккумулятора, который расходуется на запуск двигателя при помощи стартера. При этом напряжение в бортовой сети пребывает в строго установленных пределах, превышающих электрохимический потенциал пластин батареи.

Разобравшись в вопросе, для чего нужен генератор в автомобиле, необходимо понять, что в случае отказа агрегата двигатель проработает еще какое-то время за счет аккумулятора. Продлить этот период можно, отключив все второстепенные потребители: вентилятор отопителя, кондиционер, аудиосистему. По исчерпании заряда батареи двигатель заглохнет.

Устройство и конструкция автомобильного генератора

Трехфазные электроагрегаты переменного тока, устанавливаемые на современных машинах, могут быть 2-х видов: стандартный и компактный. Общее устройство автомобильных генераторов 2-х видов одинаково – они состоят из следующих элементов:

  • Шкива с валом и подшипниками.
  • Ротора с контактными кольцами.
  • Обмоток статора.
  • Корпуса генератора.
  • Регулятора напряжения.
  • Выпрямительного устройства.
  • Щеточного узла.

Конструкции автомобильных генераторов различаются только особенностями компоновки. При одинаковых электрических параметрах стандартные агрегаты значительно крупнее малоразмерных. Компактность обеспечивается за счет использования современных материалов и технологий.

Вот из чего состоит электрогенератор и какие функции выполняют его компоненты:

  • Шкив обеспечивает передачу вращения от коленвала на ротор с помощью ремня.
  • Корпус генератора имеет две крышки (переднюю, заднюю) и нужен для соединения элементов в единую конструкцию. На наружной поверхности размещены кронштейны, с помощью которых устройство крепится на двигателе.
  • Ротор представляет собой вал, на котором установлены обмотки возбуждения и контактные кольца из электротехнической меди.
  • Статор включает в себя магнитопровод из пакета стальных пластин, в которых вырезаны фигурные пазы. В них уложены трехфазные обмотки из одножильного медного провода, где и генерируется ток.
  • Регулятор напряжения изготавливается в виде отдельного блока или комбинируется со щеточным узлом. Основное назначение — управление работой генератора путем изменения тока в обмотке возбуждения.
  • Выпрямительное устройство по схеме Ларионова состоит из двух частей: алюминиевых теплоотводов, в каждый из которых запрессовано по три силовых диода. Вентили обеспечивают преобразование переменного напряжения в постоянное, что используется в бортовой сети для питания электрооборудования.
  • Передача напряжения на обмотку возбуждения производится через специальный узел и цилиндрические контактные кольца. Щетки делаются из специальных сортов графита и устанавливаются в держателе с направляющими, изготовленными из диэлектриков. Для обеспечения плотного контакта они подпружинены, а напряжение на них подается по проводу, запрессованному в основание.

Разбираясь с устройством генератора современного автомобиля, следует выделить в нем механическую и электрическую часть. Первая (к которой относятся шкив и два подшипника ротора) обеспечивает его вращение в корпусе. Вторая часть собственно генерирует электрический ток для запитывания бортовой сети. Описываемая схема автомобильного генератора впервые была применена в изделиях американской фирмы «Невиль» в 1946 году. Такими устройствами комплектовались военные машины и автобусы.


Основные параметры генератора

Основные номинальные параметры определяются исходя из технических требований к конструкции конкретной модели транспортного средства:

  • Напряжение. В соответствии с ГОСТ 52230-2004 выбирается из диапазона от 7,14 и до 28 В.
  • Ток отдачи.
  • Частота возбуждения и самовозбуждения.

Токоскоростная характеристика определяет зависимость номинального тока генератора от частоты его вращения. Напряжение в бортовой сети легковых и коммерческих автомобилей, а также автобусов составляет 12 В, особо мощных и специальных машин — 24 В. Максимальный ток отдачи определяется при частоте вращения ротора в 6 000 мин-1.

Еще одна важнейшая характеристика данного агрегата — КПД. Для современных моделей этот показатель находится на уровне 50-60%.


Как работает автомобильный генератор?

Устройство начинает функционировать только после запуска двигателя стартером, который запитывается напрямую от аккумуляторной батареи. Ключевой принцип работы генератора автомобиля состоит в преобразовании механической энергии в электрическую. На коленчатом валу силового агрегата установлен шкив, который раскручивает через ременную передачу установленный на необслуживаемых подшипниках ротор.

Питание обмотки возбуждения, расположенной на вращающемся якоре, осуществляется от аккумулятора через щеточный узел и контактные кольца. Для защиты батареи от саморазряда подключение производится через специальный выпрямитель, состоящий из трех диодов. Величина напряжения в этой цепи регулируется электронным или электромеханическим стабилизатором, интегрированным или выполненным в виде отдельного устройства.

Вращающийся якорь создает электромагнитные поля, которые индуцируют в обмотках статора переменный ток. Он поступает на выпрямитель, представляющий собой блок диодов. В него входят шесть вентилей: по три отрицательных и положительных. Они обеспечивают преобразование фазного напряжения в линейное. Соединение обмоток генератора осуществляется по схеме «треугольника» или «звезды». В первом случае величина тока в 1,7 раза ниже, нежели во втором. Треугольник применяется на моделях авто повышенной мощности.

Описываемый принцип действия автомобильного генератора обеспечивает поддержание в бортовой сети напряжения в диапазоне от 13,9 до 14,5 В. Точная величина зависит от частоты вращения коленчатого вала и уровня нагрузки. Потребители (например, аккумулятор) к электроагрегату подключаются через вывод «В+».

Для чего в генераторе регулятор напряжения?

При изменении частоты оборотов коленчатого вала и соответственно ротора в бортовой сети могут возникнуть скачки напряжения, которые негативно сказываются на работе потребителей. Скачки устраняются за счет ограничения тока возбуждения, передаваемого через щетки с регулятора напряжения на ротор. Управление осуществляется путем изменения времени подключения обмотки якоря в зависимости от нагрузки на бортовую сеть.

Если возникает неисправность регулятора или повреждение щеточного узла и контактных колец, возможен недозаряд или перезаряд аккумуляторной батареи. Длительная эксплуатация машины с таким дефектом приведет к выходу из строя АКБ.

Неисправность генератора можно определить по индикатору на панели приборов. Горение лампочки заряда аккумулятора после запуска говорит о недостаточном напряжении в сети, а мигание указывает на превышение.

Заключение

Даже самое общее представление об устройстве и принципах работы автомобильного генератора может помочь избежать неисправностей электрооборудования. Генератор начинает работать после запуска двигателя и выполняет функции основного источника тока в автомобиле.

В процессе эксплуатации автомобиля необходимо тщательно следить за натяжением приводного ремня, которое влияет на положение генератора. На ряде современных автомобилей агрегат закреплен прочно, и изношенный клиновый или поликлиновый ремень необходимо сразу менять. Поддержание генератора в исправном состоянии позволит избежать крупных трат на капитальный ремонт авто.

Реле-регулятор напряжения генератора — это неотъемлемая часть системы электрооборудования любого автомобиля. С его помощью производится поддержка напряжения в определенном диапазоне значений. В данной статье вы узнаете о том, какие конструкции регуляторов существуют на данный момент, в том числе будут рассмотрены механизмы, давно не используемые.

Основные процессы автоматического регулирования

Совершенно неважно, какой тип генераторной установки используется в автомобиле. В любом случае он имеет в своей конструкции регулятор. Система автоматического регулирования напряжения позволяет поддерживать определенное значение параметра, независимо от того, с какой частотой вращается ротор генератора. На рисунке представлен реле-регулятор напряжения генератора, схема его и внешний вид.

Анализируя физические основы, с использованием которых работает генераторная установка, можно прийти к выводу, что напряжение на выходе увеличивается, если скорость вращения ротора становится выше. Также можно сделать вывод о том, что регулирование напряжения осуществляется путем уменьшения силы тока, подаваемого на обмотку ротора, при повышении скорости вращения.

Что такое генератор

Любой автомобильный генератор состоит из нескольких частей:

1. Ротор с обмоткой возбуждения, вокруг которой при работе создается электромагнитное поле.

2. Статор с тремя обмотками, соединенными по схеме "звезда" (с них снимается переменное напряжение в интервале от 12 до 30 Вольт).

3. Кроме того, в конструкции присутствует трехфазный выпрямитель, состоящий из шести полупроводниковых диодов. Стоит заметить, что реле-регулятор напряжения генератора ВАЗ 2107 (инжектор или карбюратор в системе впрыска) одинаков.

Но работать генератор без устройства регулирования напряжения не сможет. Причина тому — изменение напряжения в очень большом диапазоне. Поэтому необходимо использовать систему автоматического регулирования. Она состоит из устройства сравнения, управления, исполнительного, задающего и специального датчика. Основной элемент — это орган регулирования. Он может быть как электрическим, так и механическим.

Работа генератора

Когда начинается вращение ротора, на выходе генератора появляется некоторое напряжение. А подается оно на обмотку возбуждения посредством органа регулировки. Стоит также отметить, что выход генераторной установки соединен напрямую с аккумуляторной батареей. Поэтому на обмотке возбуждения напряжение присутствует постоянно. Когда увеличивается скорость ротора, начинает изменяться напряжение на выходе генераторной установки. Подключается реле-регулятор напряжения генератора Valeo или любого другого производителя к выходу генератора.

При этом датчик улавливает изменение, подает сигнал на сравнивающее устройство, которое анализирует его, сопоставляя с заданным параметром. Далее сигнал идет к устройству управления, от которого производится подача на исполнительный механизм. Регулирующий орган способен уменьшить значение силы тока, который поступает к обмотке ротора. Вследствие этого на выходе генераторной установки производится уменьшение напряжения. Аналогичным образом производится повышение упомянутого параметра в случае снижения скорости ротора.

Двухуровневые регуляторы

Двухуровневая система автоматического регулирования состоит из генератора, выпрямительного элемента, аккумуляторной батареи. В основе лежит электрический магнит, его обмотка соединена с датчиком. Задающие устройства в таких типах механизмов очень простые. Это обычные пружины. В качестве сравнивающего устройства применяется небольшой рычаг. Он подвижен и производит коммутацию. Исполнительным устройством является контактная группа. Орган регулировки — это постоянное сопротивление. Такой реле-регулятор напряжения генератора, схема которого приведена в статье, очень часто используется в технике, хоть и является морально устаревшим.

Работа двухуровневого регулятора

При работе генератора на выходе появляется напряжение, которое поступает на обмотку электромагнитного реле. При этом возникает магнитное поле, с его помощью притягивается плечо рычага. На последний действует пружина, она используется как сравнивающее устройство. Если напряжение становится выше, чем положено, контакты электромагнитного реле размыкаются. При этом в цепь включается постоянное сопротивление. На обмотку возбуждения подается меньший ток. По подобному принципу работает реле-регулятор напряжения генератора ВАЗ 21099 и других автомобилей отечественного и импортного производства. Если же на выходе уменьшается напряжение, то производится замыкание контактов, при этом изменяется сила тока в большую сторону.

Электронный регулятор

У двухуровневых механических регуляторов напряжения имеется большой недостаток — чрезмерный износ элементов. По этой причине вместо электромагнитного реле стали использовать полупроводниковые элементы, работающие в ключевом режиме. Принцип работы аналогичен, только механические элементы заменены электронными. Чувствительный элемент выполнен на делителе напряжения, который состоит из постоянных резисторов. В качестве задающего устройства используется стабилитрон.

Современный реле-регулятор напряжения генератора ВАЗ 21099 является более совершенным устройством, надежным и долговечным. На транзисторах функционирует исполнительная часть устройства управления. По мере того как изменяется напряжение на выходе генератора, электронный ключ замыкает или размыкает цепь, при необходимости подключают добавочное сопротивление. Стоит отметить, что двухуровневые регуляторы являются несовершенными устройствами. Вместо них лучше использовать более современные разработки.

Трехуровневая система регулирования

Качество регулирования у таких конструкций намного выше, нежели у рассмотренных ранее. Ранее использовались механические конструкции, но сегодня чаще встречаются бесконтактные устройства. Все элементы, используемые в данной системе, такие же, как и у рассмотренных выше. Но отличается немного принцип работы. Сначала подается напряжение посредством делителя на специальную схему, в которой происходит обработка информации. Установить такой реле-регулятор напряжения генератора ("Форд Сиерра" также может оснащаться подобным оборудованием) допустимо на любой автомобиль, если знать устройство и схему подключения.

Здесь происходит сравнение действительного значения с минимальным и максимальным. Если напряжение отклоняется от того значения, которое задано, то появляется определенный сигнал. Называется он сигналом рассогласования. С его помощью производится регулирование силы тока, поступающего на обмотку возбуждения. Отличие от двухуровневой системы в том, что имеется несколько добавочных сопротивлений.

Современные системы регулирования напряжения

Если реле-регулятор напряжения генератора китайского скутера двухуровневый, то на дорогих автомобилях используются более совершенные устройства. Многоуровневые системы управления могут содержать 3, 4, 5 и более добавочных сопротивлений. Существуют также следящие системы автоматического регулирования. В некоторых конструкциях можно отказаться от использования добавочных сопротивлений.

Вместо них увеличивается частота срабатывания электронного ключа. Использовать схемы с электромагнитным реле попросту невозможно в следящих системах управления. Одна из последних разработок — это многоуровневая система управления, которая использует частотную модуляцию. В таких конструкциях необходимы добавочные сопротивления, которые служат для управления логическими элементами.

Как снимать реле-регулятор

Снять реле-регулятор напряжения генератора ("Ланос" или отечественная "девятка" у вас – не суть важно) довольно просто. Стоит заметить, что при замене регулятора напряжения потребуется всего один инструмент — плоская или крестовая отвертка. Снимать генератор или ремень и его привод не нужно. Большинство устройств находится на задней крышке генератора, причем объединены в единый узел с щеточным механизмом. Наиболее частые поломки происходят в нескольких случаях.

Во-первых, при полном стирании графитовых щёток. Во-вторых, при пробое полупроводникового элемента. О том, как провести проверку регулятора, будет рассказано ниже. При снятии вам потребуется отключить аккумуляторную батарею. Отсоедините провод, который соединяет регулятор напряжения с выходом генератора. Выкрутив оба крепежных болта, можно вытянуть корпус устройства. А вот реле-регулятор напряжения генератора ВАЗ 2101 имеет устаревшую конструкцию – он монтируется в подкапотном пространстве, отдельно от щеточного узла.

Проверка устройства

Проверяется реле-регулятор напряжения генератора ВАЗ 2106, "копеек", иномарок одинаково. Как только произведете снятие, посмотрите на щетки – у них должна быть длина более 5 миллиметров. В том случае, если этот параметр отличается, нужно проводить замену устройства. Чтобы осуществить диагностику, потребуется источник постоянного напряжения. Желательно, чтобы можно было изменить выходную характеристику. В качестве источника питания можно использовать аккумулятор и пару пальчиковых батареек. Еще вам необходима лампа, она должна работать от 12 Вольт. Вместо нее можно использовать вольтметр. Подключаете плюс от питания к разъему регулятора напряжения.

Соответственно, минусовой контакт соединяете с общей пластиной устройства. Лампочку или вольтметр соединяете со щетками. В таком состоянии между щетками должно присутствовать напряжение, если на вход подается 12-13 Вольт. Но если вы будете подавать на вход больше, чем 15 Вольт, между щетками напряжения не должно быть. Это признак исправности устройства. И совершенно не имеет значения, диагностируется реле-регулятор напряжения генератора ВАЗ 2107 или другого автомобиля. Если же контрольная лампа горит при любом значении напряжения или вовсе не загорается, значит, присутствует неисправность узла.

Выводы

В системе электрооборудования автомобиля реле-регулятор напряжения генератора "Бош" (как, впрочем, и любой иной фирмы) играет очень большую роль. Как можно чаще следите за его состоянием, проверяйте на наличие повреждений и дефектов. Случаи выхода из строя такого устройства нередки. При этом в лучшем случае разрядится аккумуляторная батарея. А в худшем может повыситься напряжение питания в бортовой сети. Это приведет к выходу из строя большей части потребителей электроэнергии. Кроме того, может выйти из строя и сам генератор. А его ремонт обойдется в кругленькую сумму, а если учесть, что АКБ очень быстро выйдет из строя, расходы и вовсе космические. Стоит также отметить, что реле-регулятор напряжения генератора Bosch является одним из лидеров по продажам. У него высокая надежность и долговечность, а характеристики максимально стабильны.

Комментировать
0
758 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector