No Image

Ремонт пуско зарядного устройства своими руками

СОДЕРЖАНИЕ
0
2 115 просмотров
20 августа 2019

Представляю Вашему вниманию мощное пуско-зарядное устройство для заряда автомобильных аккумуляторных батарей напряжением 12 и 24 вольт, а так же запуска двигателей легковых и грузовых автомобилей с соответственными напряжениями.

Его электрическая принципиальная схема:

Источником питания для пуско-зарядного устройства служит 220 вольт промышленной частоты. Мощность, потребляемая от источника может составлять от десятков ватт в режиме заряда (когда аккумуляторы почти заряжены и имеют напряжение 13.8 – 14.4 вольта или 27.6 – 28.8 вольта для пары, соединённой последовательно) до нескольких киловатт в режиме запуска стартера двигателя авто.

На вводе устройства стоит двухполюсный автоматический выключатель на ток Іном=25 А. Использование именно двухполюсного обусловлено надежностью отключения как фазы так и ноля, так как при подключении через стандартную евровилку (с заземляющим контактом) нет уверенности что однополюсный автоматический выключатель выключит именно фазу и тем самым произойдет обесточивание всего прибора в целом. Данный автоматический выключатель (в моем варианте) установлен в стандартном боксе для установки в стену. Частое включение питания этим выключателем не имеет смысла, а посему и не ставил его на передней (лицевой) панели.

И в режиме «Пуск» и в режиме «Заряд» силовой трансформатор включается одним и тем же магнитным пускателем КМ1, у которого напряжение катушки составляет 220 вольт, а ток, коммутируемый контактами порядка 20-25 ампер.

Самая главная часть пуско-зарядного устройства – силовой трансформатор. Моточных данных силового трансформатора давать не буду, так как не думаю что все бросятся копировать один в один, скажу лишь на что следует, на мой взгляд, обратить внимание. Как уже заметили из схемы – трансформатор имеет вторичную обмотку с ответвлением от средины. Здесь, при расчетах, а потом и на практике необходимо установить напряжение на выходе устройства (зажимах на аккумуляторах – проще крокодилах), учитывая и падение напряжения на диодах (в моем варианте Д161-250) в рамках 13.8-14.4 вольта для режима 12 вольт и 27.6-28.8 для 24 вольтового режима, при токе нагрузки до 30 ампер. Крокодилы использовал от массы сварочного аппарата, соответсвенно плюсовую покрасил в красный цвет.

Режим 12/24 вольта устанавливается контакторами КМ2, КМ3, силовые контакты которых, рассчитанные на 80 ампер, соединены параллельно, что в сумме дает 240 ампер.

В цепи по стороне 12/24 вольта установлен шунт, а в разрыв цепи амперметра – контакты магнитного пускателя режима « Заряд ». Данный амперметр должен измерять ток заряда. Граница шкалы в моем варианте составляют 0…30 А. Цепь замыкается в режиме заряда.

Отдельно хотелось бы поговорить о режиме « Заряд ». Как Вы уже заметили здесь нет схемы управления тока заряда, а он, можно сказать, идет максимальный. Ошибка? Думаю нет. давайте обратимся к электрооборудованию среднестатистического автомобиля. Так вот, там реле регулятор регулирует не ток заряда, а. вгоняет генератор в параметры бортовой сети автомобили, те же 13.8-14.4 вольта, соответственно, если Вы правильно намотаете трансформатор, с учётом падения напряжения на силовых диодах, то уподобите данную схему генератору автомобиля, и, по мере заряда аккумулятора, ток будет только падать.

И, не забывайте, в диодном мосте необходимо учитывать что два диода работают последовательно, то есть падение напряжение необходимо умножить на два.

Из недостатков данной схемы могу выделить лишь зависимость напряжения сети к току заряда. Так как мой вариант будет использоваться на СТО, где мало изменяется напряжение сети и основная его задача запуск грузовых автомобилей с напряжением 24 вольта, то не вижу необходимости в усложнении конструкции. Но решением проблемы может служить установке автотрансформатора, через свободные контакты магнитного пускателя КМ4, параллельно КМ1. С уважением, AZhila.

Зима скоро, люди это понимают и начинают готовить свои сани, хоть лето уже минуло. Поговорим о конструктивной реализации и ремонте пуско-зарядных устройств, которые продаются под марками BlueWeld, Ergus, Quattro Elementi и прочими. По сути, силовая часть схемы у них у всех одинакова и представляет собой трансформатор с повышенным рассеянием с некоторым количеством отводов от первичной обмотки и вторичной обмотки, состоящей из двух одинаковых половин. На выходе собрана схема мостового выпрямителя со средней точкой, таким образом мы можем использовать устройство в режиме 12 или 24 вольта. Все остальные элементы схемы — вторичны и могут быть весьма разнообразны, например, амперметр (есть во всех моделях) бывает стрелочный переменного тока, стрелочный постоянного тока или электронный с цифровым индикатором (только постоянный ток). Это мелочи.
Теперь о практической реализации "в металле".
Трансформатор собран на магнитопроводе из листовой трансформаторной стали и проварен по стыку пластин "Ш" и "I". Ни разу не приходилось видеть трансформаторы, собранные вперекрышку, что было бы правильнее. Видимо, производители экономят, поскольку сборка вперекрышку трудно поддаётся механизации и автоматизации. Для нас это минус, такой трансформатор очень трудно хорошо собрать после разборки. Условно говоря, он неремонтопригоден.
Обмотки намотаны всегда алюминиевым проводом, что тоже нехорошо, ибо в местах соединения с медными деталями возникают электрохимические пары, а в дальнейшем площадь контакта начинает подгорать. К тому же, алюминиевые провода весьма склонны ломаться при неоднократных изгибах. Это нужно учитывать при ремонте устройств.
Выпрямительный мост обычно представляет собой отдельные диоды, запрессованные в алюминиевые пластины-теплоотводы. Диоды включаются параллельно по два или по четыре в одно плечо без каких либо выравнивающих резисторов, что не есть хорошо. Замена диодов тоже затруднена, поскольку абсолютно неизвестны их тип и параметры. Маркировки на диодах нет.
Отличились производители устройств под торговой маркой Quattro Elementi. В этих устройствах в качестве выпрямителя применены диодные мосты типа KBPC5010, включённые по две-три-четыре штуки в параллель. Это вообще ни в какие ворота…
Поговорим теперь о характерных неисправностях этих устройств.
Первая и самая часто встречающаяся — плохие контакты во вторичных цепях. Так что проверяем, зачищаем и подтягиваем все соединения.
Вторая неисправность — подгорание контактов переключателей режимов в первичной цепи. Найти их непросто, поскольку переключатели должны быть с одной группой на переключение с фиксацией в крайних положениях. Отсюда рекомендация: сначала выбрать режим работы устройства, а потом включить его в сеть общим двухполюсным выключателем. Такой выключатель — весьма распространённая деталь, купить его нетрудно.
Неисправности диодного моста встречаются крайне редко, в этом случае можно порекомендовать собрать нормальный диодный мост из отечественных диодов на радиаторах. Проблемно может оказаться разместить его в корпусе устройства. Параметры диодов нужно выбирать исходя из мощности устройства, но допустимый средний прямой ток должен быть не менее 80 ампер (диоды типа Д132-80) — и это для маломощных устройств. Для более мощных порекомендую использовать диоды Д161-320 на штатных охладителях типа О171-80 или других. Для сборки такого диодного моста потребуется собрать крепёж, но усилия того стоят: диодный мост из строя выходить не будет, а уж если один или несколько диодов придётся заменить, сделать это будет уже нетрудно. Да и купить их можно недорого, особенно на вторичном рынке. Причём, подойдут даже диоды самых первых выпусков, например ВК200. Обратное напряжение диодов может быть небольшое, с учётом возможных выбросов вполне достаточно 300 вольт — это класс 3 по существующей системе маркировки. То есть, например Д161-320-3.
Ещё реже встречаются неисправности амперметра. Случаев выхода из строя амперметров переменного тока не отмечено, поскольку их обмотка представляет собой несколько витков алюминиевой шины того же сечения, что и обмотка трансформатора, а подвижная система — постоянный магнит. Если же перегорел шунт амперметра постоянного тока, то однозначно выходит из строя обмотка рамки прибора. В этом случае менять шунт и стрелочный прибор. Шунт стоит поставить с запасом, для маломощного устройства на 75 или 100 ампер, для более мощных — на 200 ампер. И отечественный стрелочный прибор со шкалой с соответствующей разметкой. Рекомендую стрелочные приборы серии М4200, очень надёжны в смысле вибростойкости.

Так что ремонт подобных пускозарядных агрегатов вполне осуществим своими силами, если исправен трансформатор. Если вопросы будут — пишите, постараюсь ответить и помочь в меру своих сил 🙂

Применением пускового устройства более удобно там, где имеется возможность подключить пусковое устройство к сети переменного тока.

Схема простого пуско зарядного устройства

Пуско зарядное устройство для автомобиля состоит из трансформатора и мощных выпрямительных диодов. Для нормальной работы пускового устройства требуется на выходе ток не менее 90 ампер, а напряжение 14 вольт, поэтому трансформатор должен быть достаточно мощным не менее 800 Вт.

Для изготовления трансформатора легче всего использовать сердечник от любого ЛАТРа. Первичная обмотка должна быть от 265 до 295 витков провода диаметром не менее 1,5мм, лучше 2,0мм. Намотку нужно осуществлять в три слоя. Между слоями хорошая изоляция.

После наматывания первичной обмотки проводим ее испытания подключая к сети и замеряют ток холостого хода. Он должен находится в пределах 210 – 390 мА. Если будет меньше, то отмотайте несколько витков, а если больше то наоборот.

Вторичная обмотка трансформатора состоит из двух обмоток и содержит по 15:18 витков многожильного провода сечением 6 мм. Намотка обмоток происходит одновременно. Напряжение на выходе обмоток должно быть около 13 вольт.

Провода соединяющие устройство с аккумулятором необходимо использовать многожильные, с сечением не менее 10 мм. Выключатель должен выдерживать ток не менее 6 Ампер.

Схема пуско зарядного устройства для автомобиля содержит симисторный регулятор напряжения, силовой трансформатор, выпрямитель на мощных диодах и стартерный аккумулятор. Ток подзарядки устанавливается регулятором тока на симисторе и регулируется переменным сопротивлением R2 и зависит от емкости аккумуляторной батареи. Входная и выходная цепи зарядки содержат фильтровочные конденсаторы, которые уменьшают степень радиопомех при работе симисторного регулятора. Симистор правильно работает при напряжения сети в от 180 до 230 В.

Выпрямительный мост синхронизирует включение симистора в обоих полупериодах сетевого напряжения. В режиме «Регенерация» используется только положительный полупериод сетевого напряжения, что очищает пластины аккумуляторной батареи от имеющейся кристаллизации.

Силовой трансформатор позаимствован от телевизора «Рубин». Можно также взять трансформатор ТСА-270. Первичные обмотки оставляем без изменений, а вот вторичные переделаем. Для этого каркасы отделим от сердечника, вторичные обмотки до фольги экранов разматывают, а на их место наматывают медным проводом сечением 2,0 мм в один слой до заполнения вторичные обмотки. В результате перемотки должно выйти примерно 15… 17 В

При регулировки к пуско зарядному устройству подключается внутренний аккумулятор, и испытывается регулировка зарядного тока сопротивлением R2. Затем проверяем зарядный ток в режиме заряда, пуска и регенерации. Если он не более 10…12 ампер, то устройство находится в рабочем состоянии. При подсоединении устройства к аккумуляторной батареи автомобиля, ток заряда в первоначальный момент возрастает примерно в 2-3 раза, а через 10 — 30 мин снижается. После этого переключатель SA3 переключают в режим «Пуск», и осуществляется старт двигателя автомобиля. В случае неудачной попытки, дополнительно подзаряжаем в течение 10 — 30 мин, и пытаемся опять.

Схема содержит: стабилизированный источник питания (диоды VD1-VD4, VD9, VD10, конденсаторы С1, СЗ, резистор R7 и транзистор VT2)

узел синхронизации (транзистор VT1, резисторы R1/R3/R6, конденсатор С4 и элементы D1.3 и D1.4, выполненные на микросхеме К561ТЛ1);

генератор импульсов (элементы D1.1, D1.2, резисторы R2, R4, R5 и конденсатор С2);

счетчик импульсов (микросхема D2К561ИЕ16);

усилитель мощности (транзистор VT3, резисторы R8 и R9);

силовой узел (оптронные тиристорные модули VS1 MTO-80, VS2, силовые диоды В-50 VD5-VD8, шунт R10, приборы – амперметр и вольтметр);

узел определения короткого замыкания (транзистор VT4, резисторы R11-R14).

Схема работает следующим образом. При подаче напряжения на выходе моста (диоды VD1-VD4) появляется однополупериодное напряжение (график 1 на рис.2), которое после прохождения цепи VT1-D1.3.-D1.4, преобразуется в импульсы положительной полярности (график 2 на рис.2). Эти импульсы для счетчика D2 являются сигналом сброса в нулевое состояние. После исчезновения импульса сброса импульсы генератора (D1.1, D1.2) суммируются в счетчике D2 и при достижении числа 64 на выходе счетчика (вывод 6) появляется импульс длительностью не менее 10 периодов импульса генератора (график 3 рис.2). Этот импульс открывает тиристор VS1 и на выходе ПЗУ (график 4 на рис.2) появляется напряжение. Для иллюстрации пределов регулирования напряжения на графике 5 рис.2 показан случай задания практически полного выходного напряжения.

При параметрах частотозадающей цепи (резисторы R2, R4, R5 и конденсатор С2 на рис.1) угол открывания тиристора VS1 лежит в пределах 17 (f=70 кГц)- 160(f=7 кГц) электрических градусов, что дает нижний предел выходного напряжения порядка 0,1 величины входного. Частоту выходных сигналов генератора определяет выражение [2]

где размерность f – кГц; R – кОм; С – нФ.При необходимости ПЗУ можно использовать для регулирования только напряжения переменного тока. Для этого из схемы (рис.1) следует исключитьмост на диодах VD5-VD8, а тиристоры включить встречно-параллельно (на рис.1 это показано штриховой линией).

В этом случае с помощью схемы (рис.1) можно регулировать выходное напряжение от 20 до 200 В, но следует помнить, что выходное напряжение далеко не синусоидально, т.е. в качестве потребителя могут служить лишь электронагревательные приборы или лампы накаливания. В последнем случае мож- но резко увеличить срок служб ламп, так как их включение можно начинать плавно, изменяя напряжение с 20 до 200 В резистором R5. Наладка ПЗУ сводится к отстройке уровня срабатывания защиты от токов короткого замыкания. Для этого убираем перемычки между точками А и В (рис.1) и в т. В временно подаем напряжение +Uп. Изменением положения движка резистора R14 определяем уровень напряжения (т. С на рис.1), при котором открывается транзистор VT4. Уровень срабатывания защиты в амперах можно определить по формуле I>k /R10, где k=Uп/Uт.c., Uп – напряжение питания; Uт.с. – напряжение в точке С, при котором срабатывает VT4; R10 – сопротивление шунта.

В заключение можно рекомендовать порядок включения ПЗУ в работу и сообщить возможные замены комплектующих, допуски и особенности изготовления: микросхему D1 можно заменить микросхемой К561ЛА7; микросхему D2 – микросхемой К561ИЕ10, соединив последовательно оба счетчика; все резисторы в схеме типа МЛТ- 0,125 Вт, за исключением резистора R8, который должен быть не менее 1 Вт; допуски на все резисторы, за исключением резистора R8, и на все конденсаторы +30 %; шунт (R10) можно изготовить из ни- хрома общим сечением не менее 6 мм (общий диаметр около 3 мм, длина 1,3- 1,5 мм). Включать ПЗУ в работу только в следующей последовательности: отключить нагрузку, выставить резистором R5 требуемое напряжение, выключить ПЗУ, подключить нагрузку и при необходимости увеличить резистором R5 напряжение до требуемой величины.

Для решения проблемы запуска двигателя зимой применим электропускатель который позволит автолюбителям, заводить холодный двигатель даже при неполностью заряженном аккумуляторе и тем самым продлить ему жизнь.

Расчет. Проведение точного расчета магнитопровода трансформатора нецелесообразно, так как он находится под нагрузкой короткое время, тем более неизвестны ни марка, ни технология прокатки электротехнической стали магнитопровода. Находим требуемую мощность трансформатора. Основным критерием служит рабочий ток электропускателя Iпуск, который находится в пределах 70 – 100 А. Мощность электропускателя (Вт) Рэп = 15 Iпуск. Определяем сечение магнитопровода (см 2 ) S = 0,017 x Рэп = 18. 25,5 см2. Схема электропускателя очень проста, надо всего лишь правильно выполнить монтаж обмоток трансформатора. Для этого можно использовать тороидальное железо от любого ЛАТРА или от электродвигателя. Для электропускателя я применил трансформаторное железо асинхронного электродвигателя, который выбрал с учетом поперечного сечения. Параметры S = ав должны быть не меньше расчетных.

В статоре электродвигателя имеются выступающие пазы, которые использовались для укладки обмоток. При расчете поперечного сечения их не учитывать. Удалять их нужно простым или специальным зубилом, но можно и не удалять (я не удалял). Это влияет только на расход электропровода первичной и вторичной обмоток и на массу электропускателя. Наружный диаметр магнитопровода в пределах 18 – 28 см. Если поперечное сечение статора электродвигателя больше расчетного, придется его расчленить на несколько частей. Ножовкой по металлу распиливаем наружные стяжки в пазах и отделяем тор необходимого поперечного сечения. Напильником удаляем острые углы и выступы. На готовом магнитопроводе проводим изоляционные работы лакотканью или изоляционной лентой на тканевой основе.

Теперь приступаем к первичной обмотке, количество витков которой определяем по формуле: n1 = 45 U1/S, где U1 – напряжение первичной обмотки, обычно U1 = 220 В; S – площадь сечения магнитопровода.

Для нее берем медный провод ПЭВ-2 диаметром 1,2 мм. Предварительно рассчитываем общую длину первичной обмотки L1. L1 = (2а + 2в) Ку, где Ку – коэффициент укладки, который равен 1,15 – 1,25; а и в – геометрические размеры магнитопровода (рис.2).

Затем наматываем провод на челнок и производим монтаж обмотки в навал. Подключив выводы к первичной обмотке, обрабатываем ее электротехническим лаком, высушиваем и производим изоляционные работы. Количество витков вторичной обмотки n2 = n1 U2/U1, где n2 и n1 – количество витков соответственно первичной и вторичной обмоток; U1 и U2 – напряжение первичной и вторичной обмоток (U2 = 15 В).

Обмотку выполняем изолированным многожильным проводом с поперечным сечением не менее 5,5 мм2. Применение шинопровода предпочтительней. Внутри провод располагаем виток к витку, а с внешней стороны с небольшим зазором – для равномерного расположения. Его длину определяем с учетом размеров первичной обмотки. Готовый трансформатор размещаем между двумя квадратными гетинаксовыми пластинами толщиной 1 см и шириной на 2 см больше, чем диаметр намотанного трансформатора, предварительно просверлив по углам отверстия для крепления стяжными болтами. На верхней пластине размещаем выводы первичной (изолируем) и вторичной обмоток, диодный мостик и ручку для транспортировки. Выводы вторичной обмотки подключаем к диодному мостику, а выходы последнего оборудуем гайками-барашками М8 и маркируем "+", "-". Пусковой ток легкового автомобиля составляет 120 – 140 А. Но так как аккумулятор и электропускатель работают в параллельном режиме в расчет принимаем максимальный ток электропускателя 100 А. Диоды VD1 – VD4 типа В50 на допустимый ток 50 А. Хотя время запуска двигателя небольшое, диоды желательно разместить на радиаторах. Выключатель S1 устанавливаем любой на допустимый ток 10 А. Соединительные провода между электропускателем и двигателем многожильные, диаметром не менее 5,5 мм разных цветов и концы выводных наконечников оборудуем зажимами типа "крокодил".

По схеме пуско-зарядного устройства хорошо видно, что тиристоры управляются токовыми импульсами цепи емкость C4 – транзисторы VT5, VT6, VT7 – диоды VD4, VD5. Фаза отпирания тиристоров и протекание тока в силовой цепи зависят от скорости увеличения напряжения на емкости конденсатора C4, то есть от тока через сопротивления регулятора тока R23-R25 и через биполярный транзистор пуска VT3. VT3 включается в режиме "пуск", если напряжение на акумуляторе снижается ниже уровня 11 В. Ключевой транзистор VT4 включает цепь управления при правильном подсоединении к батареии и защищает её при превышении тока и перегреве обмоток. Для надежной работы этой цепи требуются максимально одинаковые половинки вторичной обмотки, обычно их делают навивкой в два провода или разделением концов "косички" надвое. Ток протекающий в обмотке измеряется по разности напряжений на нагруженной и свободной половинах, т.к – они нагружаются по очереди.

Для работы с ПЗУ-14-100 требуется: выключить автоматический тумблер, иметь подключение к сети

220 В, правильно подсоединить аккумулятор (плюс к плюсу), перевести регулятор тока в минимум, а переключатель – в положение заряд, проверить напряжение батареи (если ниже 11 В, то аккумулятор необходимо зарядить), включить автоматический выключатель, регулятором задать нужный ток (обычно 1/10 от ёмкости батареи), если необходимо – переключитесь в пусковое состояние, при пуске двигателя автомобиля, должно быть свечение индикатора пуска. Для выключения – отключить автоматический выключатель, затем отсоединить контакты от сети, и аккумулятора.

Комментировать
0
2 115 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector