No Image

Вентиляция картерных газов 112 мотор

СОДЕРЖАНИЕ
0
990 просмотров
20 августа 2019

С некоторым опозданием выполняю обещание выложить отчёт о чистке форсунок вентиляции картера на частичных нагрузках.

Как я уже писАл ранее, к сожалению, эта проблема настигает не только двигатели 111.955 (М 111 Evo), как было принято считать ранее, но и более распространённые 111.975 (M 111 E23 ML), имеющие коммерческое обозначение «230 compressor».
Т.е., проблема так, или иначе касается всех 111-ых компрессорных моторов.

К счастью, особых проблем с её решением нет, если только Вы не успели окончательно угробить расходомер.

Итак, основная предпосылка к нижеописанным действиям – замасливание расходомера.

В блоке управления МЕ сохранен код P 200B (004) «B2/5 (Hot film mass air flow sensor), Plausibility error Mass air flow sensor/Throttle valve [P0101]» («Термоанемометрический расходомер массы воздуха B2/5 несоответствие расходомер воздуха/дроссельная заслонка»)

Запчасти, необходимые для ремонта: (Двигатель 111.975 M 111 E23 ML)

При промывке маслоотделителя, настоятельно рекомендуется также приобрести:

Для доступа к форсункам необходимо снять впускной коллектор.

Рассмотрим наименее затратный и лёгкий вариант – без снятия топливной рампы и необходимости замены уплотнительных колец форсунок.
Разумеется, если Вы захотите отделить топливную рампу от впускного коллектора, уплотнительные кольца форсунок необходимо будет заменить новыми!

Номера по BOSCH: 1 280 210 711 или 1 280 210 752, необходимо 4 шт. (№47 на рисунке)

Для начала, необходимо снять переднюю декоративную пластиковую крышку с торца ГБЦ и отсоединить все электрические разъёмы и вакуумные магистрали.

Трассировка магистралей и проводов представлена на фото:

Если вдруг кто-то забыл, как правильно устанавливается ремень привода вспомогательных агрегатов:

Снимаем декоративную крышку, закрывающую катушки и ВВ провода, отсоединяем и аккуратно вытаскиваем жгут.
Отсоединяем электроразъёмы топливных форсунок и разъём датчика положения распредвала.

Затем, отключаем разъём расходомера и снимаем весь подающий воздуховод в сборе – отщёлкиваем два зажима, соединяющие корпус расходомера с «пайпингом» и откручиваем 3 болта с внутренним шестигранником 5 мм. от корпуса дросселя. Снимаем весь подающий воздуховод в сборе.
Разумеется, при малейших признаках замасливания, необходимо снять расходомер и промыть его Air Mass Sensor Cleaner`ом, а весь остальной воздуховод – бензиномрастворителем и т.д.

Продолжаем.
Откручиваем оставшийся четвёртый болт крепления копуса дросселя, отсоединяем электроразъём и снимаем дроссель.
При малейшем намёке на загрязнение и, тем более, нагар, дроссель необходимо тщательно промыть и продуть сжатым воздухом!
Снимаем промежуточный фланец, крепящийся тремя болтами в внутр. шестигранником 6 мм.
Стараемся не повредить уплотнительное кольцо A 111 997 04 45 – стОит оно дорого, причём, совершенно непонятно, с какого перепуга…
А промежуточный фильтр между фланцем и корпусом дросселя (A 000 140 27 87) лучше заменить на новый – благо, стОит он недорого.

Откручиваем вакуумный патрубок (19 мм) и аккуратно отщёлкиваем 3 крепления пластикового короба моторного жгута.
Окручиваем подающий и «обратный» топливопроводы (17 мм.)
Отводим обе топливные магистрали в сторону.

Откручиваем 2 длинных сквозных болта E-12 крепления топливной рампы к ГБЦ – они сквозные, походят через корпус коллектора.
Откручиваем 7 болтов (головка 13 мм) крепления впускного коллектора к ГБЦ.
Аккуратно отводим впускной коллектор от ГБЦ.

Далее, можно пойти двумя путями:

Как поступают в Кебаб-сервис – можьно фсё прамить, нэ снимая каллэктор.
Пшик-пшик растваритэль, тык иголька ф фарсунка, затэм Ашот мажет фсё красний герметег, сабираем, иншалла – фсё заработаэт. 5 рублэй, 2 часы работы, клиэнт даволэн!

Пэрвий путь оставим без комментариев – всё-таки остановимся на снятии коллектора.
Для этого, необходимо отсоединить часть проводки, проходящей между впускными трубопроводами 3 и 4-го цилиндров – снять разъёмы с датчика детонации, датчика положения коленвала, отсоединить 2 провода от стартера (я надеюсь, Вы не забыли отключить АКБ) и отсоединить 2 вакуумных трубопровода, подключенных ко впусному коллектору сзади, в р-не моторного щита.

После этого коллектор можно аккуратно вынуть, не снимая топливной рампы.

Разумеется, коллектор, также как и промежуточный фланец, необходимо тщательно промыть и очистить от нагара и прочих отложений. Если Вы хотите снять и промыть форсунки и топливную рампу, не забудьте заменить все уплотнительные кольца! При сборке и монтаже, все кольца необходимо «пропшикать» силиконом.

Если форсунки системы вентиляции на част. нагрузках, имеют столь плачевный вид, как на данном фото (машина 2000 г.в., пробег ок. 215000 км.), то их необходимо тщательно очистить при помощи различных химикатов, медицинского шприца и сжатого воздуха. Процедура небыстрая, но всё равно, мне это кажется гораздо более безопасным, нежели чем перепрессовка новых форсунок.
Можно испольвать различные Carb Cleaner`ы, но я лично давно предпочитаю средство для мытья кухонных плит – «Шуманит».

После того, как проходимость отверстий будет полностью восстановлена, необходимо заменить обратный клапан системы вентиляции и все патрубки.
Номера деталей приведены выше.

Сборка производится в обратной последовательности.
Перед закреплением впускного коллектора необходимо проложить жгут проводки до датчиков денотации и полож. коленвала, подключить вакуумные магистрали и стартер.

Топливный фильтр на входе в рампу (штуцер 17 мм.) необходимо заменить на новый!

Перед запуском не забываем сбросить все адаптации!

Как и двигатель M104, M112 мог устанавливаться на все модельные ряды заднеприводных Мерседесов – от С- до S-класса. Двигатель получился очень компактным и легким. Главным образом это было достигнуто за счет применения головок блока с одним распредвалом и тремя клапанами на цилиндр (два впускных и один выпускной клапаны) .

Мотор выпускался четырех объемов – M112 Е26 для типов С240 и Е240 объемом 2597 куб.см.; M112 Е28 для типов С280 и Е280 объемом 2799 куб.см.; M112 Е32 для большинства других типов; M112 Е37 для большинства типов (они несли обозначение “350” – например, ML350 ), рабочим объемом 3724 куб.см.

Производство мотора было налажено на заводе в г. BadCannstatt, который был открыт 8 апреля 1997 года, за две недели до запуска завода в Тускалузе, штат Алабама, США, где началось производство типа 163.154 ML320.
Особняком стоит мотор M112 E32ML, который непродолжительное время устанавливался на типы C 32 AMG (тип 203) и SLK 32 AMG (тип 170). Мотор получился очень “живым”, и многие ценители утверждают , что он намного более эффектен, чем, например, M113 в том же С55 AMG, который появился позже.

Конструкторам удалось создать гибкую компоновочную схему: в машинах с низким капотом воздушный фильтр был вынесен на правое крыло, и его связывал с дроссельной заслонкой патрубок с датчиком расхода воздуха. В автомобилях, где пространство над мотором позволяло, воздушный фильтр “нахлобучили” прямо на двигатель, и в этом случае расходомер монтировался непосредственно на дроссельную заслонку.

Компрессорный вариант M112 для типов C32AMG и SLK32AMG

Номер двигателя набит за правой головкой блока на приливе картера маховика. Номер кернится точками (точнее, 5-лучевыми “звездочками”)

Характерные дефекты для двигателей M112

Разрушение демпфера шкива коленвала

Несмотря на простоту конструкции, двигатель доставил немало проблем владельцам и ремонтникам. Дефектов было множество. Их мы коснемся отдельно. Одним из дефектов является разрушение шкива коленвала (на фото слева – начальная стадия разрушения, когда резиновая “прослойка” между двумя половинками шкива начинает вылезать наружу и разрушаться). В крайней стадии шкив разваливается и начинает пилить переднюю крышку, а иногда достает и до поддона.

начальная стадия разрушения демпфера

Проблемы системы вентиляции картера на моторах M112 и M113

Проблема задевает так или иначе всех владельцев Мерседесов с моторами M112 и M113. Выражается это как правило в двух моментах: замасливании по стыку клапанных крышек с крышками камер вентиляции картерных газов и, самое главное, в повышенном расходе масла .

К слову, о расходе. Если расход масла на Вашем Мерседесе с мотором M112 и M113 не превышает 1 литра на 1000 км, то теоретически можно не расстраиваться – это допустимый расход масла. Если Вас это беспокоит, или расход превышает указанный литр на тысячу – есть повод для поиска причин. Но определитесь для себя: в 75% случаев стоимость решения этой проблемы намного превышает стоимость масла, которое Вы можете истратить на доливы в течение нескольких лет.

Итак, расход масла может обуславливаться тремя причинами:

  • внешние утечки (на моторах M112 и M113 это, как правило, течь корпуса масляного фильтра/теплообменника , течь клапанных крышек, маслозаливной горловины, редко – сальников коленвала, еще реже – поддона двигателя ). Этот тип неисправности подлежит обязательному устранению;
  • угаром масла из-за износа цилиндропоршневой группы или старения маслосъемных колпачков. Для точной постановки диагноза в этой ситуации требуется осмотр цилиндров с помощью гибкого эндоскопа – можно увидеть и задиры на стенках цилиндров и масло/нагар на стержнях клапанов. Задиры на стенках этих моторов чаще всего обуславливаются попаданием частичек катализатора при разрушении последнего от использования некачественного топлива или экономии на свечах зажигания. Проход выхлопных газов настолько запирается поврежденным катализатором, что порой после открытия выпускного клапана часть газов из-за резонансных движений может попасть обратно в цилиндр, неся за собой и мелкие крошки катализатора (керамика, которая просто сжирает стенки цилиндров);
  • потерями масла через систему вентиляции картера. Это происходит, как правило, из-за использования некачественного масла, больших межсервисных интервалов (лучше все-таки менять масло раз в 10000 км), частых перегревов или наоборот – большого числа холодных пусков при очень низких температурах.

В последнем случае необходимо снятие крышек камер вентиляции на левой и правой клапанных крышках. Работа самая обыкновенная и требует только аккуратности и не самого большого набора инструментов. После снятия крышек камер вентиляции необходимо прочистить калиброванные отвестия (хорошо видны на вставках на двух фото ниже).

Можно воспользоваться сверлом диаметром 1,5 мм (если расковыряете на больший диаметр – можете напороться на еще больший расход масла) для их чистки. Также прочистите отверстия для слива масла в клапанных крышках (обведены желтым кружком на нижнем фото). Не забудьте заменить все шланги вентиляции – уже через 30000 они просто деревянные. Шлангов там немного, и денег они стоят совсем не героиновых.

Работу сделать ни разу не вредно для Вашего мотора, но не рассчитывайте, что это панацея – если система была действительно забита, то потери масла через нее составляли 200 – 400 грамм на 1000 км. Соответственно, примерно настолько снизится расход. Если же речь шла об литре на тысячу – проблем скорее всего несколько.

Для чего предназначена система вентиляции картера двигателя, понятно из ее названия. Но почему картер необходимо вентилировать? Как показывает практика, точность ответа на этот вопрос сильно зависит от того, приходилось ли раньше тому или иному владельцу сталкиваться с проблемами, которые система вентиляции способна создавать. Если не приходилось, случается, что о том, из-за чего картер нуждается в вентиляции, равно как и том, как она реализуется, автовладелец может и не догадываться.

Все упирается в прорыв газов в картер. Как бы ни были хороши поршневые кольца, полную герметизацию пространства над поршнем, где происходит рабочий процесс, они обеспечить не могут. В результате под действием высокого давления из надпоршневого пространства в картер проникают не только продукты сгорания горючей смеси, но на такте сжатия и некоторая часть самой горючей смеси.

Если прорвавшиеся газы не отводить, давление в картере повышается, в результате чего картерные газы способны выдавить щуп масломера с последующим выбрасыванием масла из двигателя в моторное отделение и вызвать появление течей масла по прокладкам и сальникам. Вентиляция обеспечивает выравнивание давления в картере с атмосферным давлением, что позволяет избежать этих негативных последствий прорыва газов. Это и есть основная причина оснащения любого двигателя вентиляцией картера.

Однако в целую систему PCV (Positive Crankcase Ventilation) вентиляция превратилась благодаря экологии. Картерные газы токсичны. Поэтому широко применявшаяся некогда вентиляция с помощью сапуна с вытяжной трубкой, отводившей газы из картера прямо в атмосферу, примерно с середины 1960-х годов была запрещена сначала в США, а затем и в Западной Европе.

Сейчас сапуны открытого типа можно увидеть лишь на коробках передач, раздаточных коробках и других агрегатах, где их наличие обусловлено способностью воздуха от нагрева во время работы агрегата расширяться, из-за чего увеличивается давление внутри узла, что также чревато выдавливанием уплотнений и появлением течей.

В закрытых системах вентиляции, коими оборудованы все современные моторы, картерные газы отводятся во впускной коллектор, после чего возвращаются в цилиндры двигателя. Закрытые системы не сообщаются с атмосферой, а стало быть, не загрязняют окружающую среду углеводородными соединениями – несгоревшим топливом, продуктами неполного сгорания топлива, масляными парами, которыми насыщены картерные газы, а позволяют им с пользой догореть в цилиндрах.

Но только этим достоинства закрытой вентиляции не ограничиваются. Открытая вентиляция работала за счет разряжения, возникающего у среза вытяжной трубки, однако обязательным условием создания достаточного для интенсивной вентиляции разряжения было движение автомобиля – чем быстрее, тем разряжение выше. Работу закрытых систем обеспечивает разряжение во впускном коллекторе, поэтому вентиляция начинает функционировать сразу же с запуском двигателя. При этом небольшое разряжение создается и в картере, что повышает надежность уплотнений.

В недостатках – усложнение конструкции двигателя. Закрытая система вентиляции требует наличия каналов в блоке и головке цилиндров, а также патрубков и шлангов, по которым циркулируют картерные газы.

В картерных газах присутствует масляная взвесь, которую во избежание высокого расхода моторного масла на угар и загрязнения узлов системы питания, находящихся во впускном тракте, необходимо отделять. Поэтому должен быть предусмотрен маслоотделитель, иногда также называемый маслоуловителем, или маслоотстойником, и каналы, по которым собранное масло возвращается в поддон.

Помимо этого, сообщение картерного пространства с впускным коллектором оказывает влияние на работу двигателя по причине снижения разряжения в коллекторе и добавления к воздуху, поступающему в цилиндры двигателя, того или иного количества картерных газов, которое существенно изменяется в зависимости от режима работы силового агрегата.

Наконец, для нормального функционирования системы вентиляции требуется подвод свежего воздуха в картерное пространство, иначе вместо повышенного давления в картере, с которым вентиляция призвана бороться, возможен обратный эффект – чрезмерное разряжение.

Это общие положения, относящиеся к системам вентиляции, но что касается их исполнения на том или ином двигателе, то тут, как говорится, сколько производителей, столько и вариантов. Кроме того, на исполнение влияет экологический класс силового агрегата, тип двигателя – бензиновый или дизельный, наличие турбонаддува.

Например, маслоотделители могут быть встроенными в двигатель и при этом располагаться внутри клапанной крышки либо в блоке цилиндров, а могут быть выполнены как отдельный узел, расположенный на моторе.

В маслоотделителях используются лабиринтные и инерционные принципы улавливания масла. В первом случае поток картерных газов движется по каналам, резко изменяющим направление. При этом капельки масла оседают на стенках лабиринта, затем объединяются в крупные капли и стекают вниз, где попадают в сливные каналы и возвращаются в поддон двигателя.

В маслоотделителях центробежного типа капельки масла под действием сил инерции отбрасываются и прилипают к стенкам, а далее опять-таки стекают вниз.

Способы согласования работы системы вентиляции с работой двигателя тоже бывают разными. В карбюраторных моторах, двигателях с моновпрыском и нередко при распределенном впрыске вопрос решался с помощью двух каналов подвода картерных газов, один из которых выводили перед дроссельной заслонкой, а второй, заканчивающийся калиброванным отверстием (жиклером), – за ней. При работе на холостом ходу газы поступали по каналу с жиклером за дроссельной заслонкой, но когда по мере открытия дроссельной заслонки и увеличения оборотов коленвала разряжение за заслонкой уменьшалось, но количество газов, прорвавшихся в картер, увеличивалось, из-за чего этот канал переставал справляться со своими обязанностями, в дело вступал первый канал.

Однако наибольшее применение получили клапанные системы регулирования. В них проходное сечение в трубопроводе подвода картерных газов изменяется с помощью клапана в обратной зависимости от разряжения во впускном коллекторе – чем сильнее разряжение, тем меньше проходное сечение клапана и наоборот.

Клапаны PCV в свою очередь бывают золотниковые и мембранные. С точки зрения более точного дозирования количества картерных газов мембранные считаются лучшими, но, впрочем, это не так уж и важно. Важно, что неисправность клапана ведет к нарушению состава горючей смеси. Отсюда начинаются проблемы, которые в эксплуатации способна создавать вентиляция картера.

Клапаны, как известно, могут потерять подвижность или, говоря проще, заклинить в каком-то положении. У мембранных клапанов сомнение вызывает также надежность и долговечность материала мембраны. Заклинить клапан может из-за засорения. В картерных газах присутствуют мелкодисперсные частички сажи и нагара. Чем хуже техническое состояние двигателя, тем их больше. Опять же в мелких капельках масла могут находиться еще более мелкие инородные включения. Чем хуже обслуживается двигатель, тем включений больше. Эта грязь откладывается не только в клапане PCV, но и в калиброванных отверстиях, патрубках системы вентиляции. Опять же патрубки могут прорваться – их материал отнюдь не вечен.

Коварство системы вентиляции заключается в том, что неполадки в ней могут не оказывать сильно заметного влияния, а если и начинают сказываться уменьшением мощности, увеличением расхода топлива, слишком быстрым загрязнением дроссельной заслонки, регулятора холостого хода, замасливанием воздушного фильтра и прочими проблемами, то их списывают на неисправности других систем, прежде всего систем питания и зажигания.

Но в зимний период эксплуатации вентиляция способна на настоящие подлости. Ко всему прочему в картерных газах содержатся водяные пары. Откуда им взяться? Из атмосферного воздуха, поступающего в двигатель, разумеется.

Перемещаясь по системе, пар может конденсироваться в «закоулках», после чего при низких температурах окружающей среды влага изменяет агрегатное состояние, превращаясь в лед. Он в свою очередь закупоривает какое-то «узкое место» системы. Картерным газам опять-таки не остается ничего другого, как выдавить щуп масломера и начать выгонять наружу моторное масло. Причем если засорения системы вентиляции нагаром при исправной работе силового агрегата и его своевременном обслуживании качественными расходными материалами можно ждать бесконечно долго, то обмерзание – вопрос очень короткого времени.

Проблема обмерзания известна разработчикам двигателей, о чем свидетельствует наличие встроенных в систему вентиляции обогревов. На приведенной выше схеме системы вентиляции дизелей 1.6 и 2.0 TDI Volkswagen функцию обогрева выполняет нагревательный резистор. К сожалению, нередко этими обогревами оборудуется вентиляция картера только тех моторов, которые предназначены для автомобилей, продающихся в странах с холодным климатом, – так называемое северное исполнение. Если подогрев не предусмотрен или он неисправен – жди сюрпризов.

И опять-таки, к сожалению, не во всех инструкциях по эксплуатации есть указания по уходу за системой вентиляции картера. Он должен заключаться в периодической очистке полостей вентиляционных шлангов, маслоотделителя, калиброванных отверстий и других узких мест в системе.

При этом обслуживание системы в существующих указаниях по уходу рекомендуется проводить одновременно с очередной заменой масла в двигателе либо через одну замену. Однако как часто подобные рекомендации используются на СТО, в гаражах, владельцами, самостоятельно обслуживающими свои машины? Как в такой ситуации говорят философы, вероятность есть всегда, в данном случае она равна нулю.

Сергей БОЯРСКИХ
Фото автора
ABW.BY

Благодарим за помощь в организации фотосъемки Ресурсный центр на базе автомеханического колледжа имени академика М.С.Высоцкого

Комментировать
0
990 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector