No Image

Детонация двигателя что это такое

СОДЕРЖАНИЕ
0
937 просмотров
20 августа 2019

🔧 Причины детонации двигателя при выключении зажигания и запуске.
— Сохрани эту статью к себе на стену.

• Такое явление, как детонация двигателя, знакомо практически каждому автовладельцу. Чаще всего она возникает при движении в гору на высокой передаче с небольшой скоростью. К звуку работы двигателя внутреннего сгорания (ДВС) примешивается жесткий металлический стук, который многие принимают за стук поршневых пальцев.

— Что такое детонация?

• Детонация – это процесс взрывного воспламенения рабочей смеси в цилиндрах двигателя. В то время как нормальная скорость распространения фронта пламени составляет около 30 м/с, при детонации огонь распространяется в десятки раз быстрее – до 2000 м/с.

• В нормальных условиях смесь начинает воспламеняться, когда поршень немного не доходит до верхней мертвой точки, угол опережения зажигания составляет обычно 2-3 градуса. Завершается вспышка после того, как поршень минует ВМТ. В случае детонации смесь воспламеняется еще в середине такта сжатия. Поршень испытывает сильное противодействие, в итоге пропадает мощность двигателя и значительно повышается расход топлива.

• Данное явление никогда не идет на пользу мотору, однако детонацию можно разделить на допустимую и недопустимую. В первом случае ее даже не всегда удается заметить. Обычно она возникает на низких оборотах и продолжается недолго. Чаще всего подобное происходит в двигателях небольшого объема с относительно большой мощностью и крутящим моментом (например, 107 л.с. и 135 Нм при объеме 1,4 л). Недопустимая детонация, как правило, возникает в форсированных ДВС при повышенных нагрузках на высоких оборотах. Всего после нескольких секунд работы в таких условиях, мотор может получить критические повреждения.

• Существует еще одно явление, которое автовладельцы нередко путают с детонацией – дизелинг. Мотор после выключения зажигания продолжает работать рывками, то с повышением, то с понижением оборотов, звук работы двигателя при этом металлический, схожий со звуком детонации. Это явление иного рода и причины его появления иные: при глушении мотора, бензин в цилиндрах самовоспламеняется из-за высокой степени сжатия, как в дизельном ДВС, отсюда и название. Не следует путать дизелинг с калильным зажиганием – там при глушении рабочая смесь воспламеняется от нагретых электродов свечей и нагара.

— Чем опасна детонация?

• Весь кривошипно-шатунный механизм и головка блока цилиндров испытывают разрушающие нагрузки, способные при длительном воздействии привести к поломке ДВС. Кроме того, температура в цилиндрах также поднимается до недопустимых значений (до +3700 градусов), что грозит прогаром прокладки ГБЦ, а также коррозией днища поршня и зеркала цилиндров.

• рокладка головки блока – это первая деталь, которая придет в негодность из-за детонации. Она способна перенести лишь кратковременную работу в режиме запредельных термических и механических нагрузок. Худшее, чем грозит детонация – замена блока цилиндров, коленчатого вала, поршневой группы и головки блока.

— Причины возникновения детонации:

• Причины, в силу которых возникает данное явление, можно разделить на три группы:

• октановое число бензина;
• конструктивные особенности ДВС;
• условия эксплуатации автомобиля.

— Влияние октанового числа:

• В отличие от дизельного двигателя, в котором воспламенение рабочей смеси происходит благодаря высокой степени сжатия, в бензиновом для этой цели применяется система зажигания. Смесь бензина и воздуха поджигается искрой, возникающей между электродами свечей.

• Степень сжатия у бензиновых моторов намного меньше, это связано с тем, что бензин не столь устойчив к детонации, как дизельное топливо. Основной характеристикой бензина является октановое число, отражающее его детонационную стойкость. Чем оно выше, тем сильнее можно сжать топливно-воздушную смесь.

• Если автомобиль, силовой агрегат которого рассчитан на применение топлива с октановым числом не ниже 95, заправить бензином марки АИ-92, то с высокой долей вероятности можно утверждать, что при высоких нагрузках рабочая смесь в цилиндрах будет детонировать.

• Однако проблема может появиться и в случае, если марка топлива соответствует рекомендациям производителя. Все дело в качестве бензина. Недобросовестные продавцы нередко самостоятельно повышают октановое число, путем добавления в горючее сжиженного пропана или метана. Эти газы очень быстро испаряются, после чего в баке остается низкооктановый бензин.

• Вследствие детонации низкооктанового топлива, в камере сгорания усиленно образуется нагар, который, в свою очередь, может вызвать такое явление, как калильное зажигание. В этом случае двигатель продолжает работать даже после выключения зажигания. Причины его возникновения в том, что воспламеняется топливно-воздушная смесь не от искры, а от раскаленных электродов свечи или нагара.

— Влияние конструктивных особенностей:

• Причины возникновения детонации могут крыться в конструктивных особенностях двигателя.
К их числу можно отнести:

• степень сжатия;
• форму камеры сгорания;
• форму днища поршня;
• наличие наддува;
• расположение свечей зажигания.

• Так, чем выше степень сжатия, тем ДВС более склонен к детонации. То же можно сказать и о системах наддува («надутым» моторам требуется высокооктановый бензин).

— Влияние условий эксплуатации:

• Не последнюю роль играют и условия, в которых эксплуатируется машина. Детонация может возникать при движении на повышенной передаче с низкой скоростью. Так, если попытаться въехать в гору на четвертой передаче со скоростью 30 км/ч, из-под капота незамедлительно раздастся характерный металлический стук.

• Свое влияние оказывает правильность работы системы зажигания (рабочая смесь в цилиндрах детонирует при раннем зажигании), исправность системы охлаждения двигателя, наличие нагара на поршнях и в камерах сгорания. Подвергают себя опасности автовладельцы, стремящиеся любыми способами уменьшить аппетит машины. С этой целью электронный блок управления «перепрошивается» для приготовления более бедной смеси, чем нужно. В результате ухудшается динамика авто, а при повышенных нагрузках возникает детонация.

Детона́ция (от фр. détoner — «взрываться» и лат. detonare — «греметь» [1] ) — режим горения, при котором по веществу распространяется ударная волна, инициирующая химические реакции горения, в свою очередь, поддерживающие движение ударной волны за счёт выделяющегося в экзотермических реакциях тепла. Комплекс, состоящий из ударной волны и зоны экзотермических химических реакций за ней, распространяется по веществу со сверхзвуковой скоростью и называется детонационной волной [1] . Фронт детонационной волны — это поверхность гидродинамического нормального разрыва.

Скорость распространения фронта детонационной волны относительно исходного неподвижного вещества называется скоростью детонации. Скорость детонации зависит только от состава и состояния детонирующего вещества и может достигать нескольких километров в секунду как в газах, так и в конденсированных системах (жидких или твёрдых взрывчатых веществах). Скорость детонации значительно превышает скорость медленного горения, которая всегда существенно меньше скорости звука в веществе и не превышает нескольких метров в секунду.

Многие вещества способны как к медленному (дефлаграционноному) горению, так и к детонации. В таких веществах для распространения детонации её необходимо инициировать внешним воздействием (механическим или тепловым). В определённых условиях медленное горение может самопроизвольно переходить в детонацию.

Детонацию, как физико-химическое явление, не следует отождествлять со взрывом. Взрыв — это процесс, в котором за короткое время в ограниченном объёме выделяется большое количество энергии и образуются газообразные продукты взрыва, способные совершить значительную механическую работу или вызвать разрушения в месте взрыва. Взрыв может иметь место и при воспламенении и быстром сгорании газовых смесей или взрывчатых веществ в ограниченном пространстве, хотя при этом детонационная волна не образуется. Так, быстрое (взрывное) сгорание пороха в стволе артиллерийского орудия в процессе выстрела не является детонацией.

Стук, возникающий в двигателях внутреннего сгорания, также называют детонацией (англ. knock ), однако это не детонация в строгом смысле этого слова. Стук вызывается преждевременным самовоспламенением топливовоздушной смеси с последующим быстрым её сгоранием в режиме взрывного горения, но без образования ударных волн. Детонационные волны в работающем двигателе (англ. superknock ) [2] возникают крайне редко и только при нарушении условий эксплуатации, например из-за нештатного низкооктанового топлива. При этом двигатель очень быстро выходит из строя из-за разрушения конструкционных элементов ударными волнами.

Содержание

История исследований явления [ править | править код ]

Вероятно, впервые термин «детонация» был введён в научный обиход Лавуазье в «Трактате по элементарной химии» (фр. Traité élémentaire de chimie ), опубликованном в Париже в 1789 году [3] . Во второй половине XIX века были синтезированы вторичные взрывчатые вещества, в основе действия которых лежит явление детонации. Однако из-за большой скорости детонационной волны и разрушительного действия взрыва научное изучение детонации оказалось чрезвычайно затруднено и началось с публикаций исследований явления детонации газовых смесей в трубах в 1881 году французскими химиками Малляром и Ле Шателье и независимо от них Бертло и Вьелем [4] . В 1890 году русский учёный В. А. Михельсон, опираясь на работы Гюгонио по ударным волнам, вывел уравнения для распространения детонационной волны и получил выражение для скорости детонации [5] . Дальнейшее развитие теории было выполнено Чепменом в 1899 году [6] и Жуге в 1905 году [7] . В теории Чепмена—Жуге, названной гидродинамической теорией детонации, детонационная волна рассматривалась как поверхность разрыва, а условие для определения скорости детонации, названное их именами ( условие Чепмена—Жуге [en] ), было введено как постулат.

В 1940-е годы Я. Б. Зельдович разработал теорию детонации, в которой учитывается конечное время протекания химической реакции вслед за нагревом вещества ударной волной. В этой модели условие Чепмена—Жуге получило ясный физический смысл как правило отбора скорости детонации [8] , а сама модель была названа моделью ZND [en] — по именам Зельдовича, Неймана и Дёринга, так как независимо от него к схожим результатам пришли фон Нейман [9] в США и Дёринг [10] в Германии.

Модели Чепмена—Жуге и ZND позволили существенно продвинуться в понимании явления детонации, однако они по необходимости были одномерными и упрощёнными. С ростом возможностей экспериментального исследования детонации в 1926 году английскими исследователями Кэмпбеллом и Вудхедом был открыт эффект спирального продвижения фронта детонации по газовой смеси [11] . Это явление получило название «спиновой детонации» и впоследствии было обнаружено и в конденсированных системах [12] .

В 1959 году сотрудники ИХФ АН СССР Ю. Н. Денисов и Я. К. Трошин открыли явление ячеистой структуры и пульсирующих режимов распространения детонационной волны [13] [14] .

Механизм детонации [ править | править код ]

Детонация может возникать в газах, жидкостях, конденсированных веществах и гетерогенных средах. При прохождении фронта ударной волны вещество нагревается. Если ударная волна достаточно сильная, то температура за фронтом ударной волны может превысить температуру самовоспламенения вещества, и в веществе начинаются химические реакции горения. В ходе химических реакций выделяется энергия, подпитывающая ударную волну. Такое взаимодействие газодинамических и физико-химических факторов приводит к образованию комплекса из ударной волны и следующей за ней зоны химических реакций, называемого детонационной волной. Механизм превращения энергии в детонационной волне отличается от механизма в волне медленного горения (дефлаграции), движущейся с дозвуковой скоростью, в которой передача энергии в исходную смесь осуществляется в основном теплопроводностью [15] .

Гидродинамическая теория детонации [ править | править код ]

Если характерные размеры системы заметно превышают толщину детонационной волны, то её можно считать поверхностью нормального разрыва между исходными компонентами и продуктами детонации. В этом случае законы сохранения массы, импульса и энергии по обеим сторонам разрыва в системе координат, где фронт волны неподвижен, выражаются следующими соотношениями:

  • ρ 0 D = ρ ( D − u ) <displaystyle
    ho _<0>D=
    ho (D-u)>— сохранение массы,
  • P 0 + ρ 0 D 2 = P + ρ ( D − u ) 2 <displaystyle P_<0>+
    ho _<0>D^<2>=P+
    ho (D-u)^<2>>— сохранение импульса,
  • P 0 D + ρ 0 D ( e 0 + D 2 / 2 ) = P ( D − u ) + ρ ( D − u ) ( e + ( D − u ) 2 / 2 ) <displaystyle P_<0>D+
    ho _<0>D(e_<0>+D^<2>/2)=P(D-u)+
    ho (D-u)(e+(D-u)^<2>/2)>— сохранение энергии.

Здесь D — скорость детонационной волны, (D — u) — скорость продуктов относительно детонационной волны, P — давление, ρ — плотность, e — удельная внутренняя энергия. Индексом 0 обозначены величины, относящиеся к исходному веществу. Исключая из этих уравнений u, имеем:

  • P − P 0 = ( ρ 0 D ) 2 ( V 0 − V ) <displaystyle P-P_<0>=(
    ho _<0>D)^<2>(V_<0>-V)>,
  • e − e 0 = 1 2 ( P + P 0 ) ( V 0 − V ) <displaystyle e-e_<0>=<frac <1><2>>(P+P_<0>)(V_<0>-V)>[16] .

Первое соотношение выражает линейную зависимость между давлением P и удельным объёмом V=1/ρ и называется прямой Михельсона (в зарубежной литературе — прямой Рэлея). Второе соотношение называется детонационной адиабатой или кривой Гюгонио (в зарубежной литературе также — Рэнкина—Гюгонио). Если известно уравнение состояния вещества, то внутренняя энергия может быть выражена через давление и объём, и кривая Гюгонио может быть также представлена как линия в координатах P и V [17] .

Модель Чепмена—Жуге [ править | править код ]

Система двух уравнений (для прямой Михельсона и кривой Гюгонио) содержит три неизвестных (D, P и V), поэтому для определения скорости детонации D требуется дополнительное уравнение, которое невозможно получить только из термодинамических соображений. Поскольку детонационная волна устойчива, звуковые возмущения в продуктах не могут догонять фронт детонационной волны, иначе он будет разрушаться. Таким образом, скорость звука в продуктах детонации не может превышать скорость течения за фронтом детонационной волны.

На плоскости P, V прямая Михельсона и кривая Гюгонио могут пересекаться не более чем в двух точках. Чепмен и Жуге предположили, что скорость детонации определяется по условию касания прямой Михельсона и кривой Гюгонио для полностью прореагировавших продуктов (детонационной адиабаты). В этом случае прямая Михельсона является касательной к детонационной адиабате, и эти линии пересекаются ровно в одной точке, названной точкой Чепмена-Жуге (CJ). Это условие соответствует минимальному наклону прямой Михельсона и физически означает, что детонационная волна распространяется с минимально возможной скоростью, и скорость течения за фронтом детонационной волны в точности равна скорости звука в продуктах детонации [18] .

Модель Зельдовича, Неймана и Дёринга (ZND) [ править | править код ]

Модель Чепмена-Жуге позволяет описать распространение детонационной волны как гидродинамического разрыва, но не даёт ответов на вопросы, связанные со структурой зоны химических реакций. Эти вопросы стали особенно актуальными в конце 1930-х годов в связи с быстрым развитием военной техники, боеприпасов и взрывчатых веществ. Независимо друг от друга Я. Б. Зельдович в СССР, Джон фон Нейман в США и Вернер Дёринг в Германии создали модель, названную впоследствии по их именам моделью ZND. Аналогичные результаты были получены и в кандидатской диссертации А. А. Гриба, выполненной в 1940 году в Томске [19] .

В этой модели считается, что при распространении детонации вещество сначала нагревается при прохождении фронта ударной волны, а химические реакции начинаются в веществе спустя некоторое время, равное задержке самовоспламенения. В ходе химических реакций выделяется тепло, которое приводит к дополнительному расширению продуктов и увеличению скорости их движения. Таким образом, зона химических реакций выступает в роли своего рода поршня, толкающего ведущую ударную волну и обеспечивающего её устойчивость [20] .

На диаграмме P, V эта модель условно отображается в виде процесса, первой стадией которого будет скачок по адиабате Гюгонио для исходного вещества в точку с максимальным давлением, с последующим постепенным спуском по прямой Михельсона до её касания с адиабатой Гюгонио для прореагировавшего вещества, то есть до точки Чепмена-Жуге [21] . В этой теории правило отбора скорости детонации и гипотеза Чепмена-Жуге получают своё физическое обоснование. Все состояния выше точки Чепмена-Жуге оказываются неустойчивыми, так как в них скорость звука в продуктах превышает скорость течения за фронтом детонационной волны. В состояния ниже точки Чепмена-Жуге попасть невозможно, так как скачок давления на фронте ударной волны всегда больше конечной разности давлений между продуктами детонации и исходным веществом [22] .

Однако такие режимы могут наблюдаться в эксперименте при искусственном ускорении детонационной волны, и они называются соответственно пересжатой или недосжатой детонацией [23] .

Детонация в технике [ править | править код ]

В двигателях внутреннего сгорания детонацией часто называют взрывное горение в цилиндре (см. Стук в двигателе). Двигатели внутреннего сгорания, реализующие цикл Отто, рассчитаны на медленное горение горючей смеси без резких скачков давления. Быстрое сгорание смеси резко повышает давление в камере сгорания, что приводит к ударным нагрузкам на детали конструкции двигателя и быстрому выходу двигателя из строя. Топливо с более высоким октановым числом допускает большую степень сжатия и лучше противостоит детонации [24] .

Детонационное горение является наиболее термодинамически выгодным способом сжигания топлива и преобразования химической энергии топлива в полезную работу [25] . Поэтому детонация может применяться в рабочем процессе в камерах сгорания перспективных энергетических установок, таких как импульсный детонационный двигатель [26] [27] .

Явление детонации лежит в основе действия взрывчатых веществ, широко применяемых как в военном деле, так и в гражданской хозяйственной деятельности при производстве взрывных работ [28] .

Процесс беспорядочного воспламенения горюче-воздушной смеси в камере цилиндра двигателя внутреннего сгорания называется детонацией.

Что такое детонация двигателя

Такое явления, как детонация ДВС появилась после создания таких двигателей, принцип работы которых основан на создании воспламенении топливно-воздушной смеси в цилиндрах, за счет чего ударной волной происходит толчок поршней и шатунов, которые вращают коленчатый вал мотора.

Хорошая качественная работа двигателя сопровождается воспламенением перемешанного подаваемого топлива с необходимым количеством воздуха. А при детонации двигателя топливная смесь взрывается и работает вне заданного цикла.

А автомобилях старых образцов проверку работоспособности мотора определяли, по большей части, на слух.

Датчик детонации ДВС

В современных машинах установлены датчики детонации ДВС, которые имеют возможность контролировать и управлять уровнем опасности, возникающим вследствие беспорядочного самовоспламенения топливно-воздушной смеси.

Принцип работы датчика детонации основан на том, что он фиксирует колебания цилиндров и передает электрический импульс электронному блоку управления (ЭБУ). Дальнейший контроль по предотвращению детонации двигателя берет на себя ЭБУ. Исходя из полученных электрических импульсов, он знает, надо обеднить смесь или обогатить, и, следит за углом опережения зажигания. Благодаря датчику детонации ДВС работает экономично при максимальной мощности.

Причины возникновения детонации

Ресурс двигателей зависит от правильной эксплуатации. А правильность эксплуатации — это, значит, что при малейших появлениях неполадок, шумов, расхода, ненормальной вибрации сразу принимать меры по их устранению.

Причин детонации ДВС много:

  1. Плохой бензин или дизтопливо (для дизелей).
  2. Октановой число топлива ниже нормы по ГОСТу.
  3. Закупоренные топливный и масляный фильтры.
  4. Не рабочие форсунки.
  5. Неправильная работа топливных инжекторов.
  6. Разрегулирован топливный насос.
  7. Неисправный датчик кислорода — лямбда зонд.
  8. Свечи зажигания не подходят для этой ДВС конкретной марки и модели авто.
  9. Нарушение циркуляции в системе охлаждения.
  10. Наличие проблем с управлением двигателем.

Октановое число топлива

К частой причине возникновения детонации в ДВС относится — эксплуатация мотора бензином с низким октановым числом.

Октановое число — это показатель степени сжатия. Чем выше октановое число, тем сильнее надо сжать топливо в цилиндре, чтобы оно воспламенилось. Чем ниже октановый показатель, тем меньше требуется компрессии для воспламенения топливно-воздушной смеси.

Современные автомобили с двигателями высокого давления должны эксплуатироваться топливом с высоким октановым числом.

Октановое число является, своего рода, антидетонацией, если компрессия двигателей соответствует заливаемому топливу.

Если залить топливо с малым октановым числом в авто с мощным мотором высокой компрессии, то оно будет сгорать в нем раньше положенного времени, что уже создаст антициклическую работу.

Оптимальная работа двигателя внутреннего сгорания осуществляется за счет нахождения «золотой» середины, то есть, чтобы топливно-воздушная смесь не самовоспламенялась от неправильной степени сжатия, а происходила за счет подачи свечами зажигания искр.

Нагар в цилиндрах

Если в цилиндре низкая компрессия, то горючая смесь будет сгорать не полностью, что также приводит к дальнейшим неисправностям — закоксовке. Потом придется делать раскоксовку двигателя своими руками или в сервисе. При образовании слоя нагара на стенках цилиндра, диаметр, соответственно, уменьшается, а компрессия повышается, что приводит к возникновению детонации ДВС.

Чем чище топливо, тем дольше межремонтный период ДВС и тем больше времени до капиталки ДВС. По частоте замены топливного фильтра можно определить, какого качества топливо, в основном, используется.

Не соответствуют свечи зажигания

Игнорируя рекомендации производителей двигателей и свечей зажигания можно установить не подходящие свечи. Часто, на производителей свечей не обращают внимания, при покупке только разделяют для инжекторных двигателей и для карбюраторных. Свечи, которые не подходят, будут воспламенять горючую смесь в неположенное время, что также приведет к детонации двигателя.

Рассмотренные выше 3 причины возникновения детонации — самые часто встречающиеся, но самые легко устраняемые.

Как защитить ДВС от детонации

Защитить двигатель внутреннего сгорания от детонации можно при недопущении вышеперечисленных причин. При обнаружении первых признаков детонации следует принять меры по их устранению.

  1. Устанавливать рекомендованные свечи зажигания для конкретного мотора.
  2. Заливать соответствующее для автомобиля топливо. Например, по рекомендации завода-изготовителя машины рекомендованным для заправки требуется только бензин с октановым числом 95, но, если заливать 92-й бензин, то может появиться детонация ДВС, потому что компрессии требуется поменьше и воспламеняется быстрее.
  3. Своевременно менять фильтры, по мере их загрязнения.
  4. Не перегревать мотор.
  5. Следить за исправностью датчиков и сигналами бортового компьютера.

Как устранить детонацию

Детонацию ДВС, то есть взрывное горение топливно-воздушной смеси в цилиндре можно устранить зная все причины возникновения такого явления.

Убрать детонацию двигателя во время движения можно изменяя скорость и давление. Увеличение скорости уменьшит детонацию, так как максимально создаваемое давление уменьшается и, следовательно, на нагрев смеси уходит меньше времени и уменьшается время сжигания смеси.

Если при нагрузке автомобиль начинает детонировать, например, при подъеме на гору начинает слышаться звуки детонации, тогда надо переключить коробку переключения переда на 1-2 ступени ниже, чтобы был запас мощности.

Последствия детонации

Как уже было описано выше, детонация — это разрушительная сила, приводящая к сильной вибрации деталей кривошипно-шатунного механизма, головки блока цилиндров и других деталей, непосредственно связанных в работой ДВС.

Что конкретно происходит при детонировании ДВС

При детонации, то есть при взрыве топливно-воздушной смеси в цилиндре, появляется ударная волна, которая разрушает гладкие стенки цилиндра, уничтожает защитную пленку на поверхностях трущихся деталей.

К последствиям детонации относится и перегрев цилиндров мотора, из-за того, что высокой температуры газы нагревают соприкасаемые детали.

А при перегреве цилиндров в результате взрыва подаваемого горючего начинают крошиться кромки поршней.

Перегретый двигатель разрушает прокладку головки блока цилиндров, приводит к прогару клапанов газораспределительного механизма, свечи зажигания перегорают, возможно появление микротрещин на самом блоке или головке блока.

Отсюда делаем вывод, что детонация ДВС с сопровождающимися высокими термическими и ударными нагрузками, приводит к разрушению как отдельных деталей, так и двигателя в целом. Эксплуатация автомобиля с детонацией двигателя уменьшает работоспособный ресурс и межремонтный период.

Приобретаем полезные знания по видео: Теория ДВС.

Как детонирует двигатель на видео (шум).

Комментировать
0
937 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
Adblock
detector